Simple Applications
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Permutation and Combination

119262 If \({ }^{2 n+1} P_{n-1}:{ }^{2 n-1} P_n=3: 5\) then the value of \(n\) is equal to

1 4
2 3
3 2
4 1
Permutation and Combination

119263 If \({ }^{20} \mathrm{C}_{\mathrm{r}}={ }^{20} \mathrm{C}_{\mathrm{r}-10}\) then \({ }^{18} \mathrm{C}_{\mathrm{r}}\) is equal to

1 4896
2 816
3 1632
4 None of these
Permutation and Combination

119265 The number of values of \(r\) satisfying the equation \({ }^{39} \mathbf{C}_{3 \mathrm{r}-1}-{ }^{39} \mathbf{C}_{\mathrm{r}^2}={ }^{39} \mathbf{C}_{\mathrm{r}^2-1}-{ }^{39} \mathrm{C}_{3 \mathbf{r}}\) is

1 1
2 2
3 3
4 4
Permutation and Combination

119266 The total number of 5 digit number of different digits in which digit in the middle is the highest is

1 \(30 \times 3\) !
2 \(33 \times 3\) !
3 \(\sum_{\mathrm{n}=4}^9{ }^{\mathrm{n}} \mathrm{C}_4 \times 4\) !
4 None of these
Permutation and Combination

119262 If \({ }^{2 n+1} P_{n-1}:{ }^{2 n-1} P_n=3: 5\) then the value of \(n\) is equal to

1 4
2 3
3 2
4 1
Permutation and Combination

119263 If \({ }^{20} \mathrm{C}_{\mathrm{r}}={ }^{20} \mathrm{C}_{\mathrm{r}-10}\) then \({ }^{18} \mathrm{C}_{\mathrm{r}}\) is equal to

1 4896
2 816
3 1632
4 None of these
Permutation and Combination

119265 The number of values of \(r\) satisfying the equation \({ }^{39} \mathbf{C}_{3 \mathrm{r}-1}-{ }^{39} \mathbf{C}_{\mathrm{r}^2}={ }^{39} \mathbf{C}_{\mathrm{r}^2-1}-{ }^{39} \mathrm{C}_{3 \mathbf{r}}\) is

1 1
2 2
3 3
4 4
Permutation and Combination

119266 The total number of 5 digit number of different digits in which digit in the middle is the highest is

1 \(30 \times 3\) !
2 \(33 \times 3\) !
3 \(\sum_{\mathrm{n}=4}^9{ }^{\mathrm{n}} \mathrm{C}_4 \times 4\) !
4 None of these
Permutation and Combination

119262 If \({ }^{2 n+1} P_{n-1}:{ }^{2 n-1} P_n=3: 5\) then the value of \(n\) is equal to

1 4
2 3
3 2
4 1
Permutation and Combination

119263 If \({ }^{20} \mathrm{C}_{\mathrm{r}}={ }^{20} \mathrm{C}_{\mathrm{r}-10}\) then \({ }^{18} \mathrm{C}_{\mathrm{r}}\) is equal to

1 4896
2 816
3 1632
4 None of these
Permutation and Combination

119265 The number of values of \(r\) satisfying the equation \({ }^{39} \mathbf{C}_{3 \mathrm{r}-1}-{ }^{39} \mathbf{C}_{\mathrm{r}^2}={ }^{39} \mathbf{C}_{\mathrm{r}^2-1}-{ }^{39} \mathrm{C}_{3 \mathbf{r}}\) is

1 1
2 2
3 3
4 4
Permutation and Combination

119266 The total number of 5 digit number of different digits in which digit in the middle is the highest is

1 \(30 \times 3\) !
2 \(33 \times 3\) !
3 \(\sum_{\mathrm{n}=4}^9{ }^{\mathrm{n}} \mathrm{C}_4 \times 4\) !
4 None of these
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Permutation and Combination

119262 If \({ }^{2 n+1} P_{n-1}:{ }^{2 n-1} P_n=3: 5\) then the value of \(n\) is equal to

1 4
2 3
3 2
4 1
Permutation and Combination

119263 If \({ }^{20} \mathrm{C}_{\mathrm{r}}={ }^{20} \mathrm{C}_{\mathrm{r}-10}\) then \({ }^{18} \mathrm{C}_{\mathrm{r}}\) is equal to

1 4896
2 816
3 1632
4 None of these
Permutation and Combination

119265 The number of values of \(r\) satisfying the equation \({ }^{39} \mathbf{C}_{3 \mathrm{r}-1}-{ }^{39} \mathbf{C}_{\mathrm{r}^2}={ }^{39} \mathbf{C}_{\mathrm{r}^2-1}-{ }^{39} \mathrm{C}_{3 \mathbf{r}}\) is

1 1
2 2
3 3
4 4
Permutation and Combination

119266 The total number of 5 digit number of different digits in which digit in the middle is the highest is

1 \(30 \times 3\) !
2 \(33 \times 3\) !
3 \(\sum_{\mathrm{n}=4}^9{ }^{\mathrm{n}} \mathrm{C}_4 \times 4\) !
4 None of these