Explanation:
D According to question
The largest digit in the middle of the five digit number can be 4 (when number are formed with digits \(0,1,2\), \(3,4,5\) ) (when \(0,1,2,3,4,5\) are used) ....., 9 (when 0 , \(1,2, \ldots . ., 9\) are used).
\(\therefore\) Number of five digit numbers with largest digit 4 in the middle
\(=\left({ }^4 \mathrm{C}_4 \times 4 !-{ }^3 \mathrm{C}_3 \times 3 \text { ! }\right)\)
Number of five digit number with largest digit 5 in the middle
\(=\left({ }^5 \mathrm{C}_4 \times 4 !-{ }^3 \mathrm{C}_3 \times 3 \text { ! }\right) \text { and so on. }\)
Hence required number of numbers
\(=\left({ }^4 \mathrm{C}_4 \times 4 !-{ }^3 \mathrm{C}_3 \times 3 !\right)+\left({ }^5 \mathrm{C}_4 \times 4 !-{ }^4 \mathrm{C}_3 \times 3 !\right)+\left({ }^6 \mathrm{C}_4 \times 4 !-{ }^5 \mathrm{C}_3 \times 3 !\right)\)
\(+\ldots .+\left({ }^9 \mathrm{C}_4 \times 4 !-{ }^8 \mathrm{C}_3 \times 3 !\right)\)
\(=4 ! \sum_{\mathrm{n}=4}{ }^{\mathrm{n}} \mathrm{C}_4-3 ! \sum_{\mathrm{n}=3}^8 \mathrm{n}_3-4 !{ }^{10} \mathrm{C}_5-3 !{ }^9 \mathrm{C}_4\)
\(=3 !\left[4 \times{ }^{10} \mathrm{C}_5-{ }^9 \mathrm{C}_4\right]=3 ! \times 882\)