Elementary Properties of nPr and nCr
Permutation and Combination

118914 If \(\mathrm{m}={ }^{\mathrm{n}} \mathrm{C}_2\), then \({ }^{\mathrm{m}} \mathrm{C}_{\mathbf{2}}\) is equal to

1 \(\mathrm{n}+{ }^1 \mathrm{C}_4\)
2 \(3 \times{ }^n C_4\)
3 \(3 \times{ }^{\mathrm{n}+1} \mathrm{C}_4\)
4 None of these
Permutation and Combination

118915 If \(^n P_5=20^n P_3\), then the value of \(n\) is

1 7
2 5
3 8
4 9
Permutation and Combination

118917 \(\sum_{\mathrm{k}=0}^6{ }^{51-\mathrm{k}} \mathrm{C}_3\) is equal to

1 \({ }^{15} \mathrm{C}_4-{ }^{45} \mathrm{C}_3\)
2 \({ }^{52} \mathrm{C}_4-{ }^{45} \mathrm{C}_4\)
3 \({ }^{52} \mathrm{C}_3-{ }^{45} \mathrm{C}_3\)
4 \({ }^{51} \mathrm{C}_4-{ }^{45} \mathrm{C}_4\)
Permutation and Combination

118918 If \({ }^{2 n} C_3:{ }^n C_3=10: 1\), then the ratio \(\left(n^2+3 n\right)\) : \(\left(n^2-3 n+4\right)\) is

1 \(35: 16\)
2 \(65: 37\)
3 \(27: 11\)
4 \(2: 1\)
Permutation and Combination

118919 If \(8{ }^{\prime} P_r=7 .{ }^8 P_{r-1}\) what is the value of ' \(r\) '?

1 \(3 \& 4\)
2 \(2 \& 5\)
3 4 \& 5
4 No solution (No such 'r' exists)
Permutation and Combination

118914 If \(\mathrm{m}={ }^{\mathrm{n}} \mathrm{C}_2\), then \({ }^{\mathrm{m}} \mathrm{C}_{\mathbf{2}}\) is equal to

1 \(\mathrm{n}+{ }^1 \mathrm{C}_4\)
2 \(3 \times{ }^n C_4\)
3 \(3 \times{ }^{\mathrm{n}+1} \mathrm{C}_4\)
4 None of these
Permutation and Combination

118915 If \(^n P_5=20^n P_3\), then the value of \(n\) is

1 7
2 5
3 8
4 9
Permutation and Combination

118917 \(\sum_{\mathrm{k}=0}^6{ }^{51-\mathrm{k}} \mathrm{C}_3\) is equal to

1 \({ }^{15} \mathrm{C}_4-{ }^{45} \mathrm{C}_3\)
2 \({ }^{52} \mathrm{C}_4-{ }^{45} \mathrm{C}_4\)
3 \({ }^{52} \mathrm{C}_3-{ }^{45} \mathrm{C}_3\)
4 \({ }^{51} \mathrm{C}_4-{ }^{45} \mathrm{C}_4\)
Permutation and Combination

118918 If \({ }^{2 n} C_3:{ }^n C_3=10: 1\), then the ratio \(\left(n^2+3 n\right)\) : \(\left(n^2-3 n+4\right)\) is

1 \(35: 16\)
2 \(65: 37\)
3 \(27: 11\)
4 \(2: 1\)
Permutation and Combination

118919 If \(8{ }^{\prime} P_r=7 .{ }^8 P_{r-1}\) what is the value of ' \(r\) '?

1 \(3 \& 4\)
2 \(2 \& 5\)
3 4 \& 5
4 No solution (No such 'r' exists)
Permutation and Combination

118914 If \(\mathrm{m}={ }^{\mathrm{n}} \mathrm{C}_2\), then \({ }^{\mathrm{m}} \mathrm{C}_{\mathbf{2}}\) is equal to

1 \(\mathrm{n}+{ }^1 \mathrm{C}_4\)
2 \(3 \times{ }^n C_4\)
3 \(3 \times{ }^{\mathrm{n}+1} \mathrm{C}_4\)
4 None of these
Permutation and Combination

118915 If \(^n P_5=20^n P_3\), then the value of \(n\) is

1 7
2 5
3 8
4 9
Permutation and Combination

118917 \(\sum_{\mathrm{k}=0}^6{ }^{51-\mathrm{k}} \mathrm{C}_3\) is equal to

1 \({ }^{15} \mathrm{C}_4-{ }^{45} \mathrm{C}_3\)
2 \({ }^{52} \mathrm{C}_4-{ }^{45} \mathrm{C}_4\)
3 \({ }^{52} \mathrm{C}_3-{ }^{45} \mathrm{C}_3\)
4 \({ }^{51} \mathrm{C}_4-{ }^{45} \mathrm{C}_4\)
Permutation and Combination

118918 If \({ }^{2 n} C_3:{ }^n C_3=10: 1\), then the ratio \(\left(n^2+3 n\right)\) : \(\left(n^2-3 n+4\right)\) is

1 \(35: 16\)
2 \(65: 37\)
3 \(27: 11\)
4 \(2: 1\)
Permutation and Combination

118919 If \(8{ }^{\prime} P_r=7 .{ }^8 P_{r-1}\) what is the value of ' \(r\) '?

1 \(3 \& 4\)
2 \(2 \& 5\)
3 4 \& 5
4 No solution (No such 'r' exists)
Permutation and Combination

118914 If \(\mathrm{m}={ }^{\mathrm{n}} \mathrm{C}_2\), then \({ }^{\mathrm{m}} \mathrm{C}_{\mathbf{2}}\) is equal to

1 \(\mathrm{n}+{ }^1 \mathrm{C}_4\)
2 \(3 \times{ }^n C_4\)
3 \(3 \times{ }^{\mathrm{n}+1} \mathrm{C}_4\)
4 None of these
Permutation and Combination

118915 If \(^n P_5=20^n P_3\), then the value of \(n\) is

1 7
2 5
3 8
4 9
Permutation and Combination

118917 \(\sum_{\mathrm{k}=0}^6{ }^{51-\mathrm{k}} \mathrm{C}_3\) is equal to

1 \({ }^{15} \mathrm{C}_4-{ }^{45} \mathrm{C}_3\)
2 \({ }^{52} \mathrm{C}_4-{ }^{45} \mathrm{C}_4\)
3 \({ }^{52} \mathrm{C}_3-{ }^{45} \mathrm{C}_3\)
4 \({ }^{51} \mathrm{C}_4-{ }^{45} \mathrm{C}_4\)
Permutation and Combination

118918 If \({ }^{2 n} C_3:{ }^n C_3=10: 1\), then the ratio \(\left(n^2+3 n\right)\) : \(\left(n^2-3 n+4\right)\) is

1 \(35: 16\)
2 \(65: 37\)
3 \(27: 11\)
4 \(2: 1\)
Permutation and Combination

118919 If \(8{ }^{\prime} P_r=7 .{ }^8 P_{r-1}\) what is the value of ' \(r\) '?

1 \(3 \& 4\)
2 \(2 \& 5\)
3 4 \& 5
4 No solution (No such 'r' exists)
Permutation and Combination

118914 If \(\mathrm{m}={ }^{\mathrm{n}} \mathrm{C}_2\), then \({ }^{\mathrm{m}} \mathrm{C}_{\mathbf{2}}\) is equal to

1 \(\mathrm{n}+{ }^1 \mathrm{C}_4\)
2 \(3 \times{ }^n C_4\)
3 \(3 \times{ }^{\mathrm{n}+1} \mathrm{C}_4\)
4 None of these
Permutation and Combination

118915 If \(^n P_5=20^n P_3\), then the value of \(n\) is

1 7
2 5
3 8
4 9
Permutation and Combination

118917 \(\sum_{\mathrm{k}=0}^6{ }^{51-\mathrm{k}} \mathrm{C}_3\) is equal to

1 \({ }^{15} \mathrm{C}_4-{ }^{45} \mathrm{C}_3\)
2 \({ }^{52} \mathrm{C}_4-{ }^{45} \mathrm{C}_4\)
3 \({ }^{52} \mathrm{C}_3-{ }^{45} \mathrm{C}_3\)
4 \({ }^{51} \mathrm{C}_4-{ }^{45} \mathrm{C}_4\)
Permutation and Combination

118918 If \({ }^{2 n} C_3:{ }^n C_3=10: 1\), then the ratio \(\left(n^2+3 n\right)\) : \(\left(n^2-3 n+4\right)\) is

1 \(35: 16\)
2 \(65: 37\)
3 \(27: 11\)
4 \(2: 1\)
Permutation and Combination

118919 If \(8{ }^{\prime} P_r=7 .{ }^8 P_{r-1}\) what is the value of ' \(r\) '?

1 \(3 \& 4\)
2 \(2 \& 5\)
3 4 \& 5
4 No solution (No such 'r' exists)