Permutation and Combination
118921
For \(2 \leq r \leq n,{ }^n C_r+2 .{ }^n C_{r-1}+{ }^n C_{r-2}=\)
1 \({ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}-1}\)
2 \(2 \cdot{ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}+1}\)
3 \(2 \cdot{ }^{\mathrm{n}+2} \mathrm{C}_{\mathrm{r}}\)
4 \({ }^{\mathrm{n}+2} \mathrm{C}_{\mathrm{r}}\)
Explanation:
D Given,
\(2 \leq \mathrm{r} \leq \mathrm{n}\)
\({ }^n C_{\mathrm{r}}+2^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-2}\)
\(=\left({ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}\right)+\left({ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-2}\right)\left(\because{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}={ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}}\right)\)
\(={ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}}+{ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}-1}={ }^{\mathrm{n}+2} \mathrm{C}_{\mathrm{r}}\)