Explanation:
A Given, parabola,
\(\begin{aligned} y^2 =20 x \\ \text { and line } y =m x+c\end{aligned}\)
Now
\(y^2=20\left(\frac{y-c}{m}\right)\)
\(\mathrm{y}^2-\frac{20 \mathrm{y}}{\mathrm{m}}+\frac{20 \mathrm{c}}{\mathrm{m}}=0\)
\(\frac{\mathrm{y}_1+\mathrm{y}_2+\mathrm{y}_3}{3}=10\)
\(\frac{20}{\mathrm{~m}}=30\)
\(\mathrm{m}=\frac{2}{3}\)
\(\because \quad \mathrm{c}-\mathrm{m}=6\)
\(\mathrm{c}=\frac{2}{3}+6\)
\(\mathrm{c}=\frac{20}{3}\)
Now,
\(y^2-30 y+\frac{20 \times 20 / 3}{2 / 3}=0\)
\(y^2-30 y+200=0\)
\(y=10, y=20\)
So, \(\mathrm{y}=20\) and \(\mathrm{x}=20\)
Point, \(\mathrm{P}(5,10), \mathrm{Q}(20,20)\)
Now, \(\frac{20+5+\mathrm{x}}{3}=10\)
\(\mathrm{x}=30-25\)
\(\mathrm{x}=5\)
So, \(\mathrm{PQ}^2=15^2+10^2\)
\(\mathrm{PQ}^2=225+100\)
\(\mathrm{PQ}^2=325\)