Tangent and Normal of Parabola
Parabola

120280 If a line along a chord of the circle \(4 x^2+4 y^2+\) \(120 x+675=0\), passes through the point \((-30\), \(0)\) and is tangent to the parabola \(y^2=30 x\), then the length of this chord is

1 5
2 7
3 \(5 \sqrt{3}\)
4 \(3 \sqrt{5}\)
Parabola

120281 For any non-zero real value of \(m\), the equation of the parabola to which the line \(\mathbf{m x}-\mathbf{y}+\mathbf{1 0}+\) \(\mathrm{m}^2=0\) is a tangent, is

1 \(x^2=y-10\)
2 \(y^2=4(x-2)\)
3 \(x^2=-4(y-10)\)
4 \(x^2=-4 y\)
Parabola

120282 The normal at point \((1,1)\) to the curve \(y^2=x^3\) is parallel to the line

1 \(3 x-y-2=0\)
2 \(2 \mathrm{x}+3 \mathrm{y}-7=0\)
3 \(2 \mathrm{x}-3 \mathrm{y}+1=0\)
4 \(2 \mathrm{y}-3 \mathrm{x}+1=0\)
Parabola

120283 The equation of the normal to the curve \(y^2=4\) ax at point ( \(\left.\mathrm{at}^2, 2 \mathrm{at}\right)\) is

1 \(y-t x=a^3+2 a t\)
2 \(y+t x=a t^3+2 a t\)
3 \(y-t x=a t^3-2 a t\)
4 None of these
Parabola

120284 Let \(x+y=k\) be a normal to the parabola \(y^2=\) \(12 x\). If \(p\) is length of the perpendicular from the focus of the parabola onto this normal, then \(4 \mathrm{k}\) \(-2 p^2\) is equal to

1 1
2 0
3 -1
4 2
Parabola

120280 If a line along a chord of the circle \(4 x^2+4 y^2+\) \(120 x+675=0\), passes through the point \((-30\), \(0)\) and is tangent to the parabola \(y^2=30 x\), then the length of this chord is

1 5
2 7
3 \(5 \sqrt{3}\)
4 \(3 \sqrt{5}\)
Parabola

120281 For any non-zero real value of \(m\), the equation of the parabola to which the line \(\mathbf{m x}-\mathbf{y}+\mathbf{1 0}+\) \(\mathrm{m}^2=0\) is a tangent, is

1 \(x^2=y-10\)
2 \(y^2=4(x-2)\)
3 \(x^2=-4(y-10)\)
4 \(x^2=-4 y\)
Parabola

120282 The normal at point \((1,1)\) to the curve \(y^2=x^3\) is parallel to the line

1 \(3 x-y-2=0\)
2 \(2 \mathrm{x}+3 \mathrm{y}-7=0\)
3 \(2 \mathrm{x}-3 \mathrm{y}+1=0\)
4 \(2 \mathrm{y}-3 \mathrm{x}+1=0\)
Parabola

120283 The equation of the normal to the curve \(y^2=4\) ax at point ( \(\left.\mathrm{at}^2, 2 \mathrm{at}\right)\) is

1 \(y-t x=a^3+2 a t\)
2 \(y+t x=a t^3+2 a t\)
3 \(y-t x=a t^3-2 a t\)
4 None of these
Parabola

120284 Let \(x+y=k\) be a normal to the parabola \(y^2=\) \(12 x\). If \(p\) is length of the perpendicular from the focus of the parabola onto this normal, then \(4 \mathrm{k}\) \(-2 p^2\) is equal to

1 1
2 0
3 -1
4 2
Parabola

120280 If a line along a chord of the circle \(4 x^2+4 y^2+\) \(120 x+675=0\), passes through the point \((-30\), \(0)\) and is tangent to the parabola \(y^2=30 x\), then the length of this chord is

1 5
2 7
3 \(5 \sqrt{3}\)
4 \(3 \sqrt{5}\)
Parabola

120281 For any non-zero real value of \(m\), the equation of the parabola to which the line \(\mathbf{m x}-\mathbf{y}+\mathbf{1 0}+\) \(\mathrm{m}^2=0\) is a tangent, is

1 \(x^2=y-10\)
2 \(y^2=4(x-2)\)
3 \(x^2=-4(y-10)\)
4 \(x^2=-4 y\)
Parabola

120282 The normal at point \((1,1)\) to the curve \(y^2=x^3\) is parallel to the line

1 \(3 x-y-2=0\)
2 \(2 \mathrm{x}+3 \mathrm{y}-7=0\)
3 \(2 \mathrm{x}-3 \mathrm{y}+1=0\)
4 \(2 \mathrm{y}-3 \mathrm{x}+1=0\)
Parabola

120283 The equation of the normal to the curve \(y^2=4\) ax at point ( \(\left.\mathrm{at}^2, 2 \mathrm{at}\right)\) is

1 \(y-t x=a^3+2 a t\)
2 \(y+t x=a t^3+2 a t\)
3 \(y-t x=a t^3-2 a t\)
4 None of these
Parabola

120284 Let \(x+y=k\) be a normal to the parabola \(y^2=\) \(12 x\). If \(p\) is length of the perpendicular from the focus of the parabola onto this normal, then \(4 \mathrm{k}\) \(-2 p^2\) is equal to

1 1
2 0
3 -1
4 2
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Parabola

120280 If a line along a chord of the circle \(4 x^2+4 y^2+\) \(120 x+675=0\), passes through the point \((-30\), \(0)\) and is tangent to the parabola \(y^2=30 x\), then the length of this chord is

1 5
2 7
3 \(5 \sqrt{3}\)
4 \(3 \sqrt{5}\)
Parabola

120281 For any non-zero real value of \(m\), the equation of the parabola to which the line \(\mathbf{m x}-\mathbf{y}+\mathbf{1 0}+\) \(\mathrm{m}^2=0\) is a tangent, is

1 \(x^2=y-10\)
2 \(y^2=4(x-2)\)
3 \(x^2=-4(y-10)\)
4 \(x^2=-4 y\)
Parabola

120282 The normal at point \((1,1)\) to the curve \(y^2=x^3\) is parallel to the line

1 \(3 x-y-2=0\)
2 \(2 \mathrm{x}+3 \mathrm{y}-7=0\)
3 \(2 \mathrm{x}-3 \mathrm{y}+1=0\)
4 \(2 \mathrm{y}-3 \mathrm{x}+1=0\)
Parabola

120283 The equation of the normal to the curve \(y^2=4\) ax at point ( \(\left.\mathrm{at}^2, 2 \mathrm{at}\right)\) is

1 \(y-t x=a^3+2 a t\)
2 \(y+t x=a t^3+2 a t\)
3 \(y-t x=a t^3-2 a t\)
4 None of these
Parabola

120284 Let \(x+y=k\) be a normal to the parabola \(y^2=\) \(12 x\). If \(p\) is length of the perpendicular from the focus of the parabola onto this normal, then \(4 \mathrm{k}\) \(-2 p^2\) is equal to

1 1
2 0
3 -1
4 2
Parabola

120280 If a line along a chord of the circle \(4 x^2+4 y^2+\) \(120 x+675=0\), passes through the point \((-30\), \(0)\) and is tangent to the parabola \(y^2=30 x\), then the length of this chord is

1 5
2 7
3 \(5 \sqrt{3}\)
4 \(3 \sqrt{5}\)
Parabola

120281 For any non-zero real value of \(m\), the equation of the parabola to which the line \(\mathbf{m x}-\mathbf{y}+\mathbf{1 0}+\) \(\mathrm{m}^2=0\) is a tangent, is

1 \(x^2=y-10\)
2 \(y^2=4(x-2)\)
3 \(x^2=-4(y-10)\)
4 \(x^2=-4 y\)
Parabola

120282 The normal at point \((1,1)\) to the curve \(y^2=x^3\) is parallel to the line

1 \(3 x-y-2=0\)
2 \(2 \mathrm{x}+3 \mathrm{y}-7=0\)
3 \(2 \mathrm{x}-3 \mathrm{y}+1=0\)
4 \(2 \mathrm{y}-3 \mathrm{x}+1=0\)
Parabola

120283 The equation of the normal to the curve \(y^2=4\) ax at point ( \(\left.\mathrm{at}^2, 2 \mathrm{at}\right)\) is

1 \(y-t x=a^3+2 a t\)
2 \(y+t x=a t^3+2 a t\)
3 \(y-t x=a t^3-2 a t\)
4 None of these
Parabola

120284 Let \(x+y=k\) be a normal to the parabola \(y^2=\) \(12 x\). If \(p\) is length of the perpendicular from the focus of the parabola onto this normal, then \(4 \mathrm{k}\) \(-2 p^2\) is equal to

1 1
2 0
3 -1
4 2