Tangent and Normal of Parabola
Parabola

120275 If the curve \(y=a x^2+b x+c, x \in R\), passes through the point \((1,2)\) and the tangent line to this curve at origin is \(y=x\), then the possible values of \(a, b, c\) are

1 \(\mathrm{a}=\frac{1}{2}, \mathrm{~b}=\frac{1}{2}, \mathrm{c}=1\)
2 \(\mathrm{a}=1, \mathrm{~b}=0, \mathrm{c}=1\)
3 \(\mathrm{a}=1, \mathrm{~b}=1, \mathrm{c}=0\)
4 \(\mathrm{a}=-1, \mathrm{~b}=1, \mathrm{c}=1\)
Parabola

120276 If the three normals drawn to the parabola, \(y^2\) \(=2 \mathrm{x}\) pass through the point \((\mathrm{a}, 0), \mathbf{a} \neq 0\), then \(\mathrm{a}\) must be greater than

1 \(\frac{1}{2}\)
2 \(\frac{1}{2}\)
3 -1
4 1
Parabola

120277 Let \(\mathbf{C}\) be the locus of the mirror image of a point on the parabola \(y^2=4 x\) with respect to the line \(y=x\). Then, the equation of tangent to \(\mathbf{C}\) at \(\mathbf{P}(\mathbf{2}, \mathbf{1})\) is

1 \(x-y=1\)
2 \(2 x+y=5\)
3 \(x+3 y=5\)
4 \(x+2 y=5\)
Parabola

120278 Let the tangent to the parabola S. \(y^2=2 x\) at the point \(P(2,2)\) meet the \(X\)-axis at \(Q\) and normal at it meet the parabola \(S\) at the point \(R\). Then, the area (in square units) of \(\triangle \mathrm{PQR}\) is equal

1 \(\frac{25}{2}\)
2 \(\frac{35}{2}\)
3 \(\frac{15}{2}\)
4 25
Parabola

120275 If the curve \(y=a x^2+b x+c, x \in R\), passes through the point \((1,2)\) and the tangent line to this curve at origin is \(y=x\), then the possible values of \(a, b, c\) are

1 \(\mathrm{a}=\frac{1}{2}, \mathrm{~b}=\frac{1}{2}, \mathrm{c}=1\)
2 \(\mathrm{a}=1, \mathrm{~b}=0, \mathrm{c}=1\)
3 \(\mathrm{a}=1, \mathrm{~b}=1, \mathrm{c}=0\)
4 \(\mathrm{a}=-1, \mathrm{~b}=1, \mathrm{c}=1\)
Parabola

120276 If the three normals drawn to the parabola, \(y^2\) \(=2 \mathrm{x}\) pass through the point \((\mathrm{a}, 0), \mathbf{a} \neq 0\), then \(\mathrm{a}\) must be greater than

1 \(\frac{1}{2}\)
2 \(\frac{1}{2}\)
3 -1
4 1
Parabola

120277 Let \(\mathbf{C}\) be the locus of the mirror image of a point on the parabola \(y^2=4 x\) with respect to the line \(y=x\). Then, the equation of tangent to \(\mathbf{C}\) at \(\mathbf{P}(\mathbf{2}, \mathbf{1})\) is

1 \(x-y=1\)
2 \(2 x+y=5\)
3 \(x+3 y=5\)
4 \(x+2 y=5\)
Parabola

120278 Let the tangent to the parabola S. \(y^2=2 x\) at the point \(P(2,2)\) meet the \(X\)-axis at \(Q\) and normal at it meet the parabola \(S\) at the point \(R\). Then, the area (in square units) of \(\triangle \mathrm{PQR}\) is equal

1 \(\frac{25}{2}\)
2 \(\frac{35}{2}\)
3 \(\frac{15}{2}\)
4 25
Parabola

120275 If the curve \(y=a x^2+b x+c, x \in R\), passes through the point \((1,2)\) and the tangent line to this curve at origin is \(y=x\), then the possible values of \(a, b, c\) are

1 \(\mathrm{a}=\frac{1}{2}, \mathrm{~b}=\frac{1}{2}, \mathrm{c}=1\)
2 \(\mathrm{a}=1, \mathrm{~b}=0, \mathrm{c}=1\)
3 \(\mathrm{a}=1, \mathrm{~b}=1, \mathrm{c}=0\)
4 \(\mathrm{a}=-1, \mathrm{~b}=1, \mathrm{c}=1\)
Parabola

120276 If the three normals drawn to the parabola, \(y^2\) \(=2 \mathrm{x}\) pass through the point \((\mathrm{a}, 0), \mathbf{a} \neq 0\), then \(\mathrm{a}\) must be greater than

1 \(\frac{1}{2}\)
2 \(\frac{1}{2}\)
3 -1
4 1
Parabola

120277 Let \(\mathbf{C}\) be the locus of the mirror image of a point on the parabola \(y^2=4 x\) with respect to the line \(y=x\). Then, the equation of tangent to \(\mathbf{C}\) at \(\mathbf{P}(\mathbf{2}, \mathbf{1})\) is

1 \(x-y=1\)
2 \(2 x+y=5\)
3 \(x+3 y=5\)
4 \(x+2 y=5\)
Parabola

120278 Let the tangent to the parabola S. \(y^2=2 x\) at the point \(P(2,2)\) meet the \(X\)-axis at \(Q\) and normal at it meet the parabola \(S\) at the point \(R\). Then, the area (in square units) of \(\triangle \mathrm{PQR}\) is equal

1 \(\frac{25}{2}\)
2 \(\frac{35}{2}\)
3 \(\frac{15}{2}\)
4 25
Parabola

120275 If the curve \(y=a x^2+b x+c, x \in R\), passes through the point \((1,2)\) and the tangent line to this curve at origin is \(y=x\), then the possible values of \(a, b, c\) are

1 \(\mathrm{a}=\frac{1}{2}, \mathrm{~b}=\frac{1}{2}, \mathrm{c}=1\)
2 \(\mathrm{a}=1, \mathrm{~b}=0, \mathrm{c}=1\)
3 \(\mathrm{a}=1, \mathrm{~b}=1, \mathrm{c}=0\)
4 \(\mathrm{a}=-1, \mathrm{~b}=1, \mathrm{c}=1\)
Parabola

120276 If the three normals drawn to the parabola, \(y^2\) \(=2 \mathrm{x}\) pass through the point \((\mathrm{a}, 0), \mathbf{a} \neq 0\), then \(\mathrm{a}\) must be greater than

1 \(\frac{1}{2}\)
2 \(\frac{1}{2}\)
3 -1
4 1
Parabola

120277 Let \(\mathbf{C}\) be the locus of the mirror image of a point on the parabola \(y^2=4 x\) with respect to the line \(y=x\). Then, the equation of tangent to \(\mathbf{C}\) at \(\mathbf{P}(\mathbf{2}, \mathbf{1})\) is

1 \(x-y=1\)
2 \(2 x+y=5\)
3 \(x+3 y=5\)
4 \(x+2 y=5\)
Parabola

120278 Let the tangent to the parabola S. \(y^2=2 x\) at the point \(P(2,2)\) meet the \(X\)-axis at \(Q\) and normal at it meet the parabola \(S\) at the point \(R\). Then, the area (in square units) of \(\triangle \mathrm{PQR}\) is equal

1 \(\frac{25}{2}\)
2 \(\frac{35}{2}\)
3 \(\frac{15}{2}\)
4 25
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here