Tangent and Normal of Parabola
Parabola

120261 The Equation of the tangent to the parabola \(y\) \(=12 x\) at \((3,-6)\) is

1 \(x-y+9=0\)
2 \(x+y+3=0\)
3 \(x+y-3=0\)
4 \(x=3\)
Parabola

120262 If the line \(y=x\) is a tangent to the parabola \(y=\) \(a x^2+b x+c\) at the point \((1,1)\) and the curve passes through \((-1,0)\), then

1 \(\mathrm{a}=\mathrm{b}=-1, \mathrm{c}=3\)
2 \(\mathrm{a}=\mathrm{b}=\frac{1}{2}, \mathrm{c}=0\)
3 \(\mathrm{a}=\mathrm{c}=\frac{1}{4}, \mathrm{~b}=\frac{1}{2}\)
4 \(\mathrm{a}=0, \mathrm{~b}=\mathrm{c}=\frac{1}{2}\)
Parabola

120263 From the point \((-1,-6)\), two tangents are drawn to \(y^2=4 x\). Then the angle between the two tangents is

1 \(\pi / 3\)
2 \(\pi / 4\)
3 \(\pi / 6\)
4 \(\pi / 2\)
Parabola

120264 The equation of the normal to the parabola \(y^2=\) \(4 x\) which is perpendicular to \(x+3 y+1=0\) is

1 \(3 x-y=33\)
2 \(3 x-y+33=0\)
3 \(3 x+y=33\)
4 \(3 x+y+33=0\)
Parabola

120265 If the angle between the tangents drawn through the point \((-2,-1)\) to the parabola \(y^2-\) \(4 x\) is \(\theta\), then \(\tan 2 \theta=\)

1 3
2 -3
3 \(-\frac{3}{4}\)
4 \(\frac{3}{4}\)
Parabola

120261 The Equation of the tangent to the parabola \(y\) \(=12 x\) at \((3,-6)\) is

1 \(x-y+9=0\)
2 \(x+y+3=0\)
3 \(x+y-3=0\)
4 \(x=3\)
Parabola

120262 If the line \(y=x\) is a tangent to the parabola \(y=\) \(a x^2+b x+c\) at the point \((1,1)\) and the curve passes through \((-1,0)\), then

1 \(\mathrm{a}=\mathrm{b}=-1, \mathrm{c}=3\)
2 \(\mathrm{a}=\mathrm{b}=\frac{1}{2}, \mathrm{c}=0\)
3 \(\mathrm{a}=\mathrm{c}=\frac{1}{4}, \mathrm{~b}=\frac{1}{2}\)
4 \(\mathrm{a}=0, \mathrm{~b}=\mathrm{c}=\frac{1}{2}\)
Parabola

120263 From the point \((-1,-6)\), two tangents are drawn to \(y^2=4 x\). Then the angle between the two tangents is

1 \(\pi / 3\)
2 \(\pi / 4\)
3 \(\pi / 6\)
4 \(\pi / 2\)
Parabola

120264 The equation of the normal to the parabola \(y^2=\) \(4 x\) which is perpendicular to \(x+3 y+1=0\) is

1 \(3 x-y=33\)
2 \(3 x-y+33=0\)
3 \(3 x+y=33\)
4 \(3 x+y+33=0\)
Parabola

120265 If the angle between the tangents drawn through the point \((-2,-1)\) to the parabola \(y^2-\) \(4 x\) is \(\theta\), then \(\tan 2 \theta=\)

1 3
2 -3
3 \(-\frac{3}{4}\)
4 \(\frac{3}{4}\)
Parabola

120261 The Equation of the tangent to the parabola \(y\) \(=12 x\) at \((3,-6)\) is

1 \(x-y+9=0\)
2 \(x+y+3=0\)
3 \(x+y-3=0\)
4 \(x=3\)
Parabola

120262 If the line \(y=x\) is a tangent to the parabola \(y=\) \(a x^2+b x+c\) at the point \((1,1)\) and the curve passes through \((-1,0)\), then

1 \(\mathrm{a}=\mathrm{b}=-1, \mathrm{c}=3\)
2 \(\mathrm{a}=\mathrm{b}=\frac{1}{2}, \mathrm{c}=0\)
3 \(\mathrm{a}=\mathrm{c}=\frac{1}{4}, \mathrm{~b}=\frac{1}{2}\)
4 \(\mathrm{a}=0, \mathrm{~b}=\mathrm{c}=\frac{1}{2}\)
Parabola

120263 From the point \((-1,-6)\), two tangents are drawn to \(y^2=4 x\). Then the angle between the two tangents is

1 \(\pi / 3\)
2 \(\pi / 4\)
3 \(\pi / 6\)
4 \(\pi / 2\)
Parabola

120264 The equation of the normal to the parabola \(y^2=\) \(4 x\) which is perpendicular to \(x+3 y+1=0\) is

1 \(3 x-y=33\)
2 \(3 x-y+33=0\)
3 \(3 x+y=33\)
4 \(3 x+y+33=0\)
Parabola

120265 If the angle between the tangents drawn through the point \((-2,-1)\) to the parabola \(y^2-\) \(4 x\) is \(\theta\), then \(\tan 2 \theta=\)

1 3
2 -3
3 \(-\frac{3}{4}\)
4 \(\frac{3}{4}\)
Parabola

120261 The Equation of the tangent to the parabola \(y\) \(=12 x\) at \((3,-6)\) is

1 \(x-y+9=0\)
2 \(x+y+3=0\)
3 \(x+y-3=0\)
4 \(x=3\)
Parabola

120262 If the line \(y=x\) is a tangent to the parabola \(y=\) \(a x^2+b x+c\) at the point \((1,1)\) and the curve passes through \((-1,0)\), then

1 \(\mathrm{a}=\mathrm{b}=-1, \mathrm{c}=3\)
2 \(\mathrm{a}=\mathrm{b}=\frac{1}{2}, \mathrm{c}=0\)
3 \(\mathrm{a}=\mathrm{c}=\frac{1}{4}, \mathrm{~b}=\frac{1}{2}\)
4 \(\mathrm{a}=0, \mathrm{~b}=\mathrm{c}=\frac{1}{2}\)
Parabola

120263 From the point \((-1,-6)\), two tangents are drawn to \(y^2=4 x\). Then the angle between the two tangents is

1 \(\pi / 3\)
2 \(\pi / 4\)
3 \(\pi / 6\)
4 \(\pi / 2\)
Parabola

120264 The equation of the normal to the parabola \(y^2=\) \(4 x\) which is perpendicular to \(x+3 y+1=0\) is

1 \(3 x-y=33\)
2 \(3 x-y+33=0\)
3 \(3 x+y=33\)
4 \(3 x+y+33=0\)
Parabola

120265 If the angle between the tangents drawn through the point \((-2,-1)\) to the parabola \(y^2-\) \(4 x\) is \(\theta\), then \(\tan 2 \theta=\)

1 3
2 -3
3 \(-\frac{3}{4}\)
4 \(\frac{3}{4}\)
Parabola

120261 The Equation of the tangent to the parabola \(y\) \(=12 x\) at \((3,-6)\) is

1 \(x-y+9=0\)
2 \(x+y+3=0\)
3 \(x+y-3=0\)
4 \(x=3\)
Parabola

120262 If the line \(y=x\) is a tangent to the parabola \(y=\) \(a x^2+b x+c\) at the point \((1,1)\) and the curve passes through \((-1,0)\), then

1 \(\mathrm{a}=\mathrm{b}=-1, \mathrm{c}=3\)
2 \(\mathrm{a}=\mathrm{b}=\frac{1}{2}, \mathrm{c}=0\)
3 \(\mathrm{a}=\mathrm{c}=\frac{1}{4}, \mathrm{~b}=\frac{1}{2}\)
4 \(\mathrm{a}=0, \mathrm{~b}=\mathrm{c}=\frac{1}{2}\)
Parabola

120263 From the point \((-1,-6)\), two tangents are drawn to \(y^2=4 x\). Then the angle between the two tangents is

1 \(\pi / 3\)
2 \(\pi / 4\)
3 \(\pi / 6\)
4 \(\pi / 2\)
Parabola

120264 The equation of the normal to the parabola \(y^2=\) \(4 x\) which is perpendicular to \(x+3 y+1=0\) is

1 \(3 x-y=33\)
2 \(3 x-y+33=0\)
3 \(3 x+y=33\)
4 \(3 x+y+33=0\)
Parabola

120265 If the angle between the tangents drawn through the point \((-2,-1)\) to the parabola \(y^2-\) \(4 x\) is \(\theta\), then \(\tan 2 \theta=\)

1 3
2 -3
3 \(-\frac{3}{4}\)
4 \(\frac{3}{4}\)