Tangent and Normal of Parabola
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Parabola

120257 The length of the tangent from \((6,8)\) to the circle \(x^2+y^2=4\) is

1 \(\sqrt{6}\)
2 \(2 \sqrt{6}\)
3 \(4 \sqrt{6}\)
4 \(5 \sqrt{6}\)
Parabola

120258 The equation of the tangent to the parabola \(y^2\) \(=16 \mathrm{x}\), which is perpendicular to the line \(3 \mathrm{x}-\) \(4 y+5=0\) is given by

1 \(4 x-3 y+9=0\)
2 \(4 x+3 y-9=0\)
3 \(4 x+3 y+9=0\)
4 \(4 x-3 y-9=0\)
Parabola

120259 The line \(y=6 x+1\) touches the parabola \(y^2=\) 24x. The coordinates of a point \(P\) on this line from which the tangent to \(y^2=24 x\) is perpendicular to the line \(y=6 x+1\), is

1 \((-1,-5)\)
2 \((-2,-11)\)
3 \((-6,-35)\)
4 \((-7,-41)\)
Parabola

120260 The equation of the tangent to the parabola \(y^2\) \(=8 \mathrm{x}\) inclined at \(30^{\circ}\) to the \(\mathrm{X}\)-axis is

1 \(3 x-\sqrt{3 y}+14=0\)
2 \(2 x-3 x+14=0\)
3 \(2 \mathrm{x}-\sqrt{3 \mathrm{y}}+7=0\)
4 \(x-\sqrt{3} y+6=0\)
Parabola

120257 The length of the tangent from \((6,8)\) to the circle \(x^2+y^2=4\) is

1 \(\sqrt{6}\)
2 \(2 \sqrt{6}\)
3 \(4 \sqrt{6}\)
4 \(5 \sqrt{6}\)
Parabola

120258 The equation of the tangent to the parabola \(y^2\) \(=16 \mathrm{x}\), which is perpendicular to the line \(3 \mathrm{x}-\) \(4 y+5=0\) is given by

1 \(4 x-3 y+9=0\)
2 \(4 x+3 y-9=0\)
3 \(4 x+3 y+9=0\)
4 \(4 x-3 y-9=0\)
Parabola

120259 The line \(y=6 x+1\) touches the parabola \(y^2=\) 24x. The coordinates of a point \(P\) on this line from which the tangent to \(y^2=24 x\) is perpendicular to the line \(y=6 x+1\), is

1 \((-1,-5)\)
2 \((-2,-11)\)
3 \((-6,-35)\)
4 \((-7,-41)\)
Parabola

120260 The equation of the tangent to the parabola \(y^2\) \(=8 \mathrm{x}\) inclined at \(30^{\circ}\) to the \(\mathrm{X}\)-axis is

1 \(3 x-\sqrt{3 y}+14=0\)
2 \(2 x-3 x+14=0\)
3 \(2 \mathrm{x}-\sqrt{3 \mathrm{y}}+7=0\)
4 \(x-\sqrt{3} y+6=0\)
Parabola

120257 The length of the tangent from \((6,8)\) to the circle \(x^2+y^2=4\) is

1 \(\sqrt{6}\)
2 \(2 \sqrt{6}\)
3 \(4 \sqrt{6}\)
4 \(5 \sqrt{6}\)
Parabola

120258 The equation of the tangent to the parabola \(y^2\) \(=16 \mathrm{x}\), which is perpendicular to the line \(3 \mathrm{x}-\) \(4 y+5=0\) is given by

1 \(4 x-3 y+9=0\)
2 \(4 x+3 y-9=0\)
3 \(4 x+3 y+9=0\)
4 \(4 x-3 y-9=0\)
Parabola

120259 The line \(y=6 x+1\) touches the parabola \(y^2=\) 24x. The coordinates of a point \(P\) on this line from which the tangent to \(y^2=24 x\) is perpendicular to the line \(y=6 x+1\), is

1 \((-1,-5)\)
2 \((-2,-11)\)
3 \((-6,-35)\)
4 \((-7,-41)\)
Parabola

120260 The equation of the tangent to the parabola \(y^2\) \(=8 \mathrm{x}\) inclined at \(30^{\circ}\) to the \(\mathrm{X}\)-axis is

1 \(3 x-\sqrt{3 y}+14=0\)
2 \(2 x-3 x+14=0\)
3 \(2 \mathrm{x}-\sqrt{3 \mathrm{y}}+7=0\)
4 \(x-\sqrt{3} y+6=0\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Parabola

120257 The length of the tangent from \((6,8)\) to the circle \(x^2+y^2=4\) is

1 \(\sqrt{6}\)
2 \(2 \sqrt{6}\)
3 \(4 \sqrt{6}\)
4 \(5 \sqrt{6}\)
Parabola

120258 The equation of the tangent to the parabola \(y^2\) \(=16 \mathrm{x}\), which is perpendicular to the line \(3 \mathrm{x}-\) \(4 y+5=0\) is given by

1 \(4 x-3 y+9=0\)
2 \(4 x+3 y-9=0\)
3 \(4 x+3 y+9=0\)
4 \(4 x-3 y-9=0\)
Parabola

120259 The line \(y=6 x+1\) touches the parabola \(y^2=\) 24x. The coordinates of a point \(P\) on this line from which the tangent to \(y^2=24 x\) is perpendicular to the line \(y=6 x+1\), is

1 \((-1,-5)\)
2 \((-2,-11)\)
3 \((-6,-35)\)
4 \((-7,-41)\)
Parabola

120260 The equation of the tangent to the parabola \(y^2\) \(=8 \mathrm{x}\) inclined at \(30^{\circ}\) to the \(\mathrm{X}\)-axis is

1 \(3 x-\sqrt{3 y}+14=0\)
2 \(2 x-3 x+14=0\)
3 \(2 \mathrm{x}-\sqrt{3 \mathrm{y}}+7=0\)
4 \(x-\sqrt{3} y+6=0\)