Tangent and Normal of Parabola
Parabola

120253 The line \(x=m y+c\) is normal to the parabola \(x^2=-4 a y\) if \(c=\)

1 \(-2 a m-a m^3\)
2 \(-2 \mathrm{am}+2 \mathrm{am}^3\)
3 \(2 \mathrm{am}-\mathrm{am}^3\)
4 \(2 a \mathrm{am}+\mathrm{am}^3\)
Parabola

120254 The equation of the common tangent with positive slope to the parabola \(y^2=8 \sqrt{3} x\) and the hyperbola \(4 x^2-y^2=4\) is

1 \(y=\sqrt{6} x+\sqrt{2}\)
2 \(y=\sqrt{6} x-\sqrt{2}\)
3 \(y=\sqrt{3} x+\sqrt{2}\)
4 \(y=\sqrt{3} x-\sqrt{2}\)
Parabola

120255 If \(y=4 x+3\) is parallel to a tangent to the parabola \(y^2=12 x\), then its distance from the normal parallel to the given line is

1 \(\frac{213}{\sqrt{17}}\)
2 \(\frac{219}{\sqrt{17}}\)
3 \(\frac{211}{\sqrt{17}}\)
4 \(\frac{210}{\sqrt{17}}\)
Parabola

120256 \(y=3 x-2\) is a straight line touching the parabola \((y-3)^2=12(x-2)\). If a line drawn perpendicular to this line at \(P\) on it, touches the given parabola, then the point \(P\) is

1 \((-1,-5)\)
2 \((-1,5)\)
3 \((-2,-8)\)
4 \((2,4)\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Parabola

120253 The line \(x=m y+c\) is normal to the parabola \(x^2=-4 a y\) if \(c=\)

1 \(-2 a m-a m^3\)
2 \(-2 \mathrm{am}+2 \mathrm{am}^3\)
3 \(2 \mathrm{am}-\mathrm{am}^3\)
4 \(2 a \mathrm{am}+\mathrm{am}^3\)
Parabola

120254 The equation of the common tangent with positive slope to the parabola \(y^2=8 \sqrt{3} x\) and the hyperbola \(4 x^2-y^2=4\) is

1 \(y=\sqrt{6} x+\sqrt{2}\)
2 \(y=\sqrt{6} x-\sqrt{2}\)
3 \(y=\sqrt{3} x+\sqrt{2}\)
4 \(y=\sqrt{3} x-\sqrt{2}\)
Parabola

120255 If \(y=4 x+3\) is parallel to a tangent to the parabola \(y^2=12 x\), then its distance from the normal parallel to the given line is

1 \(\frac{213}{\sqrt{17}}\)
2 \(\frac{219}{\sqrt{17}}\)
3 \(\frac{211}{\sqrt{17}}\)
4 \(\frac{210}{\sqrt{17}}\)
Parabola

120256 \(y=3 x-2\) is a straight line touching the parabola \((y-3)^2=12(x-2)\). If a line drawn perpendicular to this line at \(P\) on it, touches the given parabola, then the point \(P\) is

1 \((-1,-5)\)
2 \((-1,5)\)
3 \((-2,-8)\)
4 \((2,4)\)
Parabola

120253 The line \(x=m y+c\) is normal to the parabola \(x^2=-4 a y\) if \(c=\)

1 \(-2 a m-a m^3\)
2 \(-2 \mathrm{am}+2 \mathrm{am}^3\)
3 \(2 \mathrm{am}-\mathrm{am}^3\)
4 \(2 a \mathrm{am}+\mathrm{am}^3\)
Parabola

120254 The equation of the common tangent with positive slope to the parabola \(y^2=8 \sqrt{3} x\) and the hyperbola \(4 x^2-y^2=4\) is

1 \(y=\sqrt{6} x+\sqrt{2}\)
2 \(y=\sqrt{6} x-\sqrt{2}\)
3 \(y=\sqrt{3} x+\sqrt{2}\)
4 \(y=\sqrt{3} x-\sqrt{2}\)
Parabola

120255 If \(y=4 x+3\) is parallel to a tangent to the parabola \(y^2=12 x\), then its distance from the normal parallel to the given line is

1 \(\frac{213}{\sqrt{17}}\)
2 \(\frac{219}{\sqrt{17}}\)
3 \(\frac{211}{\sqrt{17}}\)
4 \(\frac{210}{\sqrt{17}}\)
Parabola

120256 \(y=3 x-2\) is a straight line touching the parabola \((y-3)^2=12(x-2)\). If a line drawn perpendicular to this line at \(P\) on it, touches the given parabola, then the point \(P\) is

1 \((-1,-5)\)
2 \((-1,5)\)
3 \((-2,-8)\)
4 \((2,4)\)
Parabola

120253 The line \(x=m y+c\) is normal to the parabola \(x^2=-4 a y\) if \(c=\)

1 \(-2 a m-a m^3\)
2 \(-2 \mathrm{am}+2 \mathrm{am}^3\)
3 \(2 \mathrm{am}-\mathrm{am}^3\)
4 \(2 a \mathrm{am}+\mathrm{am}^3\)
Parabola

120254 The equation of the common tangent with positive slope to the parabola \(y^2=8 \sqrt{3} x\) and the hyperbola \(4 x^2-y^2=4\) is

1 \(y=\sqrt{6} x+\sqrt{2}\)
2 \(y=\sqrt{6} x-\sqrt{2}\)
3 \(y=\sqrt{3} x+\sqrt{2}\)
4 \(y=\sqrt{3} x-\sqrt{2}\)
Parabola

120255 If \(y=4 x+3\) is parallel to a tangent to the parabola \(y^2=12 x\), then its distance from the normal parallel to the given line is

1 \(\frac{213}{\sqrt{17}}\)
2 \(\frac{219}{\sqrt{17}}\)
3 \(\frac{211}{\sqrt{17}}\)
4 \(\frac{210}{\sqrt{17}}\)
Parabola

120256 \(y=3 x-2\) is a straight line touching the parabola \((y-3)^2=12(x-2)\). If a line drawn perpendicular to this line at \(P\) on it, touches the given parabola, then the point \(P\) is

1 \((-1,-5)\)
2 \((-1,5)\)
3 \((-2,-8)\)
4 \((2,4)\)