Tangent and Normal of Parabola
Parabola

120244 The equations of two sides of a variable triangle are \(x=0\) and \(y=3\), and its third side is a tangent to the parabola \(y^2=6 x\). The locus of its circum centre is:

1 \(4 y^2-18 y+3 x+18=0\)
2 \(4 y^2-18 y-3 x+18=0\)
3 \(4 y^2+18 y+3 x+18=0\)
4 \(4 y^2-18 y-3 x-18=0\)
Parabola

120245 The parabolas : \(\mathrm{ax}^2+2 \mathrm{bx}+\mathrm{cy}=0\) and \(\mathrm{dx}^2+\) \(2 e x+f y=0\) intersect on the line \(y=1\). If a, b, \(c\), \(d, e, f\) are positive real numbers and \(a, b, c\), are in G.P., then

1 \(\frac{\mathrm{d}}{\mathrm{a}}, \frac{\mathrm{e}}{\mathrm{b}}, \frac{\mathrm{f}}{\mathrm{c}}\) are in G.P
2 d, e, f are in A.P
3 d, e, f are in G.P
4 \(\frac{\mathrm{d}}{\mathrm{a}}, \frac{\mathrm{e}}{\mathrm{b}}, \frac{\mathrm{f}}{\mathrm{c}}\) are in A.P
Parabola

120246 The tangents at the points \(A(1,3)\) and \(B(1,-1)\) on the parabola \(y^2-2 x-2 y=1\) meet at the point \(P\). Then the area (in unit \({ }^2\) ) of the triangle PAB is :

1 4
2 6
3 7
4 8
Parabola

120247 Let \(\alpha_1\) and \(\alpha_2\) be the ordinates of two points \(A\) and \(B\) on a parabola \(y^2=4 a x\) and let \(\alpha_3\) be the ordinate of the point of intersection of its tangents at \(A\) and \(B\). Then, \(\alpha_3-\alpha_2=\)

1 \(\alpha_3-\alpha_1\)
2 \(\alpha_3+\alpha_1\)
3 \(\alpha_1\)
4 \(\alpha_1-\alpha_3\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Parabola

120244 The equations of two sides of a variable triangle are \(x=0\) and \(y=3\), and its third side is a tangent to the parabola \(y^2=6 x\). The locus of its circum centre is:

1 \(4 y^2-18 y+3 x+18=0\)
2 \(4 y^2-18 y-3 x+18=0\)
3 \(4 y^2+18 y+3 x+18=0\)
4 \(4 y^2-18 y-3 x-18=0\)
Parabola

120245 The parabolas : \(\mathrm{ax}^2+2 \mathrm{bx}+\mathrm{cy}=0\) and \(\mathrm{dx}^2+\) \(2 e x+f y=0\) intersect on the line \(y=1\). If a, b, \(c\), \(d, e, f\) are positive real numbers and \(a, b, c\), are in G.P., then

1 \(\frac{\mathrm{d}}{\mathrm{a}}, \frac{\mathrm{e}}{\mathrm{b}}, \frac{\mathrm{f}}{\mathrm{c}}\) are in G.P
2 d, e, f are in A.P
3 d, e, f are in G.P
4 \(\frac{\mathrm{d}}{\mathrm{a}}, \frac{\mathrm{e}}{\mathrm{b}}, \frac{\mathrm{f}}{\mathrm{c}}\) are in A.P
Parabola

120246 The tangents at the points \(A(1,3)\) and \(B(1,-1)\) on the parabola \(y^2-2 x-2 y=1\) meet at the point \(P\). Then the area (in unit \({ }^2\) ) of the triangle PAB is :

1 4
2 6
3 7
4 8
Parabola

120247 Let \(\alpha_1\) and \(\alpha_2\) be the ordinates of two points \(A\) and \(B\) on a parabola \(y^2=4 a x\) and let \(\alpha_3\) be the ordinate of the point of intersection of its tangents at \(A\) and \(B\). Then, \(\alpha_3-\alpha_2=\)

1 \(\alpha_3-\alpha_1\)
2 \(\alpha_3+\alpha_1\)
3 \(\alpha_1\)
4 \(\alpha_1-\alpha_3\)
Parabola

120244 The equations of two sides of a variable triangle are \(x=0\) and \(y=3\), and its third side is a tangent to the parabola \(y^2=6 x\). The locus of its circum centre is:

1 \(4 y^2-18 y+3 x+18=0\)
2 \(4 y^2-18 y-3 x+18=0\)
3 \(4 y^2+18 y+3 x+18=0\)
4 \(4 y^2-18 y-3 x-18=0\)
Parabola

120245 The parabolas : \(\mathrm{ax}^2+2 \mathrm{bx}+\mathrm{cy}=0\) and \(\mathrm{dx}^2+\) \(2 e x+f y=0\) intersect on the line \(y=1\). If a, b, \(c\), \(d, e, f\) are positive real numbers and \(a, b, c\), are in G.P., then

1 \(\frac{\mathrm{d}}{\mathrm{a}}, \frac{\mathrm{e}}{\mathrm{b}}, \frac{\mathrm{f}}{\mathrm{c}}\) are in G.P
2 d, e, f are in A.P
3 d, e, f are in G.P
4 \(\frac{\mathrm{d}}{\mathrm{a}}, \frac{\mathrm{e}}{\mathrm{b}}, \frac{\mathrm{f}}{\mathrm{c}}\) are in A.P
Parabola

120246 The tangents at the points \(A(1,3)\) and \(B(1,-1)\) on the parabola \(y^2-2 x-2 y=1\) meet at the point \(P\). Then the area (in unit \({ }^2\) ) of the triangle PAB is :

1 4
2 6
3 7
4 8
Parabola

120247 Let \(\alpha_1\) and \(\alpha_2\) be the ordinates of two points \(A\) and \(B\) on a parabola \(y^2=4 a x\) and let \(\alpha_3\) be the ordinate of the point of intersection of its tangents at \(A\) and \(B\). Then, \(\alpha_3-\alpha_2=\)

1 \(\alpha_3-\alpha_1\)
2 \(\alpha_3+\alpha_1\)
3 \(\alpha_1\)
4 \(\alpha_1-\alpha_3\)
Parabola

120244 The equations of two sides of a variable triangle are \(x=0\) and \(y=3\), and its third side is a tangent to the parabola \(y^2=6 x\). The locus of its circum centre is:

1 \(4 y^2-18 y+3 x+18=0\)
2 \(4 y^2-18 y-3 x+18=0\)
3 \(4 y^2+18 y+3 x+18=0\)
4 \(4 y^2-18 y-3 x-18=0\)
Parabola

120245 The parabolas : \(\mathrm{ax}^2+2 \mathrm{bx}+\mathrm{cy}=0\) and \(\mathrm{dx}^2+\) \(2 e x+f y=0\) intersect on the line \(y=1\). If a, b, \(c\), \(d, e, f\) are positive real numbers and \(a, b, c\), are in G.P., then

1 \(\frac{\mathrm{d}}{\mathrm{a}}, \frac{\mathrm{e}}{\mathrm{b}}, \frac{\mathrm{f}}{\mathrm{c}}\) are in G.P
2 d, e, f are in A.P
3 d, e, f are in G.P
4 \(\frac{\mathrm{d}}{\mathrm{a}}, \frac{\mathrm{e}}{\mathrm{b}}, \frac{\mathrm{f}}{\mathrm{c}}\) are in A.P
Parabola

120246 The tangents at the points \(A(1,3)\) and \(B(1,-1)\) on the parabola \(y^2-2 x-2 y=1\) meet at the point \(P\). Then the area (in unit \({ }^2\) ) of the triangle PAB is :

1 4
2 6
3 7
4 8
Parabola

120247 Let \(\alpha_1\) and \(\alpha_2\) be the ordinates of two points \(A\) and \(B\) on a parabola \(y^2=4 a x\) and let \(\alpha_3\) be the ordinate of the point of intersection of its tangents at \(A\) and \(B\). Then, \(\alpha_3-\alpha_2=\)

1 \(\alpha_3-\alpha_1\)
2 \(\alpha_3+\alpha_1\)
3 \(\alpha_1\)
4 \(\alpha_1-\alpha_3\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here