Equation of Parabola with Given Focus and Directrix
Parabola

120973 The vertex and the focus of the parabola \(2 x^2+\) \(5 y-6 x+1=0\) respectively, are

1 \(\left(\frac{-3}{2}, \frac{7}{10}\right),\left(\frac{-3}{2}, \frac{53}{40}\right)\)
2 \(\left(\frac{-3}{2}, \frac{7}{10}\right),\left(\frac{-3}{2}, \frac{3}{40}\right)\)
3 \(\left(\frac{3}{2}, \frac{7}{10}\right),\left(\frac{3}{2}, \frac{53}{40}\right)\)
4 \(\left(\frac{3}{2}, \frac{7}{10}\right),\left(\frac{3}{2}, \frac{3}{40}\right)\)
Parabola

120974 If all the vertices of an equilateral triangle lie on the parabola \(y^2=16 x\) and one of them coincides with the vertex of that parabola, then the length of the side of that triangle is

1 \(32 \sqrt{3}\)
2 \(16 \sqrt{3}\)
3 \(8 \sqrt{3}\)
4 32
Parabola

120975 If a circle with its centre at the focus of the parabola \(\mathrm{y}^2=2 \mathrm{px}\) is such that it touches the directrix of the parabola, then a point of intersection of the circle and the parabola is

1 \(\left(\frac{\mathrm{p}}{2}, 2 \mathrm{p}\right)\)
2 \(\left(\frac{-\mathrm{p}}{2}, \mathrm{p}\right)\)
3 \(\left(\frac{\mathrm{p}}{2},-\mathrm{p}\right)\)
4 \(\left(\frac{-\mathrm{p}}{2},-\mathrm{p}\right)\)
Parabola

120976 A point on the parabola whose focus and vertex are respectively at \(\left(\frac{5}{4},-2\right)\) and \((1,-2)\) is

1 \((4,0)\)
2 \((15,2)\)
3 \((3,-1)\)
4 \((10,1)\)
Parabola

120973 The vertex and the focus of the parabola \(2 x^2+\) \(5 y-6 x+1=0\) respectively, are

1 \(\left(\frac{-3}{2}, \frac{7}{10}\right),\left(\frac{-3}{2}, \frac{53}{40}\right)\)
2 \(\left(\frac{-3}{2}, \frac{7}{10}\right),\left(\frac{-3}{2}, \frac{3}{40}\right)\)
3 \(\left(\frac{3}{2}, \frac{7}{10}\right),\left(\frac{3}{2}, \frac{53}{40}\right)\)
4 \(\left(\frac{3}{2}, \frac{7}{10}\right),\left(\frac{3}{2}, \frac{3}{40}\right)\)
Parabola

120974 If all the vertices of an equilateral triangle lie on the parabola \(y^2=16 x\) and one of them coincides with the vertex of that parabola, then the length of the side of that triangle is

1 \(32 \sqrt{3}\)
2 \(16 \sqrt{3}\)
3 \(8 \sqrt{3}\)
4 32
Parabola

120975 If a circle with its centre at the focus of the parabola \(\mathrm{y}^2=2 \mathrm{px}\) is such that it touches the directrix of the parabola, then a point of intersection of the circle and the parabola is

1 \(\left(\frac{\mathrm{p}}{2}, 2 \mathrm{p}\right)\)
2 \(\left(\frac{-\mathrm{p}}{2}, \mathrm{p}\right)\)
3 \(\left(\frac{\mathrm{p}}{2},-\mathrm{p}\right)\)
4 \(\left(\frac{-\mathrm{p}}{2},-\mathrm{p}\right)\)
Parabola

120976 A point on the parabola whose focus and vertex are respectively at \(\left(\frac{5}{4},-2\right)\) and \((1,-2)\) is

1 \((4,0)\)
2 \((15,2)\)
3 \((3,-1)\)
4 \((10,1)\)
Parabola

120973 The vertex and the focus of the parabola \(2 x^2+\) \(5 y-6 x+1=0\) respectively, are

1 \(\left(\frac{-3}{2}, \frac{7}{10}\right),\left(\frac{-3}{2}, \frac{53}{40}\right)\)
2 \(\left(\frac{-3}{2}, \frac{7}{10}\right),\left(\frac{-3}{2}, \frac{3}{40}\right)\)
3 \(\left(\frac{3}{2}, \frac{7}{10}\right),\left(\frac{3}{2}, \frac{53}{40}\right)\)
4 \(\left(\frac{3}{2}, \frac{7}{10}\right),\left(\frac{3}{2}, \frac{3}{40}\right)\)
Parabola

120974 If all the vertices of an equilateral triangle lie on the parabola \(y^2=16 x\) and one of them coincides with the vertex of that parabola, then the length of the side of that triangle is

1 \(32 \sqrt{3}\)
2 \(16 \sqrt{3}\)
3 \(8 \sqrt{3}\)
4 32
Parabola

120975 If a circle with its centre at the focus of the parabola \(\mathrm{y}^2=2 \mathrm{px}\) is such that it touches the directrix of the parabola, then a point of intersection of the circle and the parabola is

1 \(\left(\frac{\mathrm{p}}{2}, 2 \mathrm{p}\right)\)
2 \(\left(\frac{-\mathrm{p}}{2}, \mathrm{p}\right)\)
3 \(\left(\frac{\mathrm{p}}{2},-\mathrm{p}\right)\)
4 \(\left(\frac{-\mathrm{p}}{2},-\mathrm{p}\right)\)
Parabola

120976 A point on the parabola whose focus and vertex are respectively at \(\left(\frac{5}{4},-2\right)\) and \((1,-2)\) is

1 \((4,0)\)
2 \((15,2)\)
3 \((3,-1)\)
4 \((10,1)\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Parabola

120973 The vertex and the focus of the parabola \(2 x^2+\) \(5 y-6 x+1=0\) respectively, are

1 \(\left(\frac{-3}{2}, \frac{7}{10}\right),\left(\frac{-3}{2}, \frac{53}{40}\right)\)
2 \(\left(\frac{-3}{2}, \frac{7}{10}\right),\left(\frac{-3}{2}, \frac{3}{40}\right)\)
3 \(\left(\frac{3}{2}, \frac{7}{10}\right),\left(\frac{3}{2}, \frac{53}{40}\right)\)
4 \(\left(\frac{3}{2}, \frac{7}{10}\right),\left(\frac{3}{2}, \frac{3}{40}\right)\)
Parabola

120974 If all the vertices of an equilateral triangle lie on the parabola \(y^2=16 x\) and one of them coincides with the vertex of that parabola, then the length of the side of that triangle is

1 \(32 \sqrt{3}\)
2 \(16 \sqrt{3}\)
3 \(8 \sqrt{3}\)
4 32
Parabola

120975 If a circle with its centre at the focus of the parabola \(\mathrm{y}^2=2 \mathrm{px}\) is such that it touches the directrix of the parabola, then a point of intersection of the circle and the parabola is

1 \(\left(\frac{\mathrm{p}}{2}, 2 \mathrm{p}\right)\)
2 \(\left(\frac{-\mathrm{p}}{2}, \mathrm{p}\right)\)
3 \(\left(\frac{\mathrm{p}}{2},-\mathrm{p}\right)\)
4 \(\left(\frac{-\mathrm{p}}{2},-\mathrm{p}\right)\)
Parabola

120976 A point on the parabola whose focus and vertex are respectively at \(\left(\frac{5}{4},-2\right)\) and \((1,-2)\) is

1 \((4,0)\)
2 \((15,2)\)
3 \((3,-1)\)
4 \((10,1)\)