120972
Study the following statements.
I. The vertex of the parabola \(x=l y^2+m y+n\) is
\(\left(\mathbf{n}-\frac{\mathbf{m}^2}{4 l},-\frac{\mathbf{m}}{2 l}\right)\)
II. The focus of the parabola \(y=1 x^2+\mathbf{m x}+\mathbf{n}\) is
\(\left(\mathrm{n}+\frac{1-\mathbf{m}^2}{4 l}, \frac{\mathrm{m}}{2 l}\right)\)
III. The pole of the line \(l \mathrm{x}+\mathrm{my}+\mathrm{n}=0\) with
respect to the parabola \(x^2=4 a y\) is
\(\left(-\frac{2 \mathbf{a} l}{\mathrm{~m}}, \frac{\mathbf{n}}{\mathbf{m}}\right)\)
The, the correct option among the following is
120972
Study the following statements.
I. The vertex of the parabola \(x=l y^2+m y+n\) is
\(\left(\mathbf{n}-\frac{\mathbf{m}^2}{4 l},-\frac{\mathbf{m}}{2 l}\right)\)
II. The focus of the parabola \(y=1 x^2+\mathbf{m x}+\mathbf{n}\) is
\(\left(\mathrm{n}+\frac{1-\mathbf{m}^2}{4 l}, \frac{\mathrm{m}}{2 l}\right)\)
III. The pole of the line \(l \mathrm{x}+\mathrm{my}+\mathrm{n}=0\) with
respect to the parabola \(x^2=4 a y\) is
\(\left(-\frac{2 \mathbf{a} l}{\mathrm{~m}}, \frac{\mathbf{n}}{\mathbf{m}}\right)\)
The, the correct option among the following is
120972
Study the following statements.
I. The vertex of the parabola \(x=l y^2+m y+n\) is
\(\left(\mathbf{n}-\frac{\mathbf{m}^2}{4 l},-\frac{\mathbf{m}}{2 l}\right)\)
II. The focus of the parabola \(y=1 x^2+\mathbf{m x}+\mathbf{n}\) is
\(\left(\mathrm{n}+\frac{1-\mathbf{m}^2}{4 l}, \frac{\mathrm{m}}{2 l}\right)\)
III. The pole of the line \(l \mathrm{x}+\mathrm{my}+\mathrm{n}=0\) with
respect to the parabola \(x^2=4 a y\) is
\(\left(-\frac{2 \mathbf{a} l}{\mathrm{~m}}, \frac{\mathbf{n}}{\mathbf{m}}\right)\)
The, the correct option among the following is
120972
Study the following statements.
I. The vertex of the parabola \(x=l y^2+m y+n\) is
\(\left(\mathbf{n}-\frac{\mathbf{m}^2}{4 l},-\frac{\mathbf{m}}{2 l}\right)\)
II. The focus of the parabola \(y=1 x^2+\mathbf{m x}+\mathbf{n}\) is
\(\left(\mathrm{n}+\frac{1-\mathbf{m}^2}{4 l}, \frac{\mathrm{m}}{2 l}\right)\)
III. The pole of the line \(l \mathrm{x}+\mathrm{my}+\mathrm{n}=0\) with
respect to the parabola \(x^2=4 a y\) is
\(\left(-\frac{2 \mathbf{a} l}{\mathrm{~m}}, \frac{\mathbf{n}}{\mathbf{m}}\right)\)
The, the correct option among the following is