Asymptote of Hyperbola
Hyperbola

120836 Equation of a tangent to the hyperbola \(5 x^2-y^2\) \(=5\) and which passes through an external point \((2,8)\) is

1 \(3 \mathrm{x}-\mathrm{y}+2=0\)
2 \(3 \mathrm{x}+\mathrm{y}-14=0\)
3 \(23 \mathrm{x}-3 \mathrm{y}-22=0\)
4 \(3 \mathrm{x}-23 \mathrm{y}+178=0\)
Hyperbola

120837 Consider the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) the area of the triangle formed by the asymptotes and the tangent drawn to it at \((a, 0)\) is

1 \(\frac{1}{2} \mathrm{ab}\)
2 ab
3 \(2 \mathrm{ab}\)
4 \(4 \mathrm{ab}\)
Hyperbola

120838 Asymptotes of a Hyperbola \(\frac{x^2}{25}-\frac{y^2}{16}=1\) are

1 \(x= \pm \frac{4}{5} y\)
2 \(y= \pm \frac{4}{5} x\)
3 \(x= \pm \frac{25}{16} y\)
4 \(y= \pm \frac{5}{4} x\)
Hyperbola

120839 Find the measure of angle between the asymptotes of \(x^2-y^2=16\).

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{3}\)
3 \(\frac{\pi}{6}\)
4 \(\frac{\pi}{2}\)
Hyperbola

120836 Equation of a tangent to the hyperbola \(5 x^2-y^2\) \(=5\) and which passes through an external point \((2,8)\) is

1 \(3 \mathrm{x}-\mathrm{y}+2=0\)
2 \(3 \mathrm{x}+\mathrm{y}-14=0\)
3 \(23 \mathrm{x}-3 \mathrm{y}-22=0\)
4 \(3 \mathrm{x}-23 \mathrm{y}+178=0\)
Hyperbola

120837 Consider the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) the area of the triangle formed by the asymptotes and the tangent drawn to it at \((a, 0)\) is

1 \(\frac{1}{2} \mathrm{ab}\)
2 ab
3 \(2 \mathrm{ab}\)
4 \(4 \mathrm{ab}\)
Hyperbola

120838 Asymptotes of a Hyperbola \(\frac{x^2}{25}-\frac{y^2}{16}=1\) are

1 \(x= \pm \frac{4}{5} y\)
2 \(y= \pm \frac{4}{5} x\)
3 \(x= \pm \frac{25}{16} y\)
4 \(y= \pm \frac{5}{4} x\)
Hyperbola

120839 Find the measure of angle between the asymptotes of \(x^2-y^2=16\).

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{3}\)
3 \(\frac{\pi}{6}\)
4 \(\frac{\pi}{2}\)
Hyperbola

120836 Equation of a tangent to the hyperbola \(5 x^2-y^2\) \(=5\) and which passes through an external point \((2,8)\) is

1 \(3 \mathrm{x}-\mathrm{y}+2=0\)
2 \(3 \mathrm{x}+\mathrm{y}-14=0\)
3 \(23 \mathrm{x}-3 \mathrm{y}-22=0\)
4 \(3 \mathrm{x}-23 \mathrm{y}+178=0\)
Hyperbola

120837 Consider the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) the area of the triangle formed by the asymptotes and the tangent drawn to it at \((a, 0)\) is

1 \(\frac{1}{2} \mathrm{ab}\)
2 ab
3 \(2 \mathrm{ab}\)
4 \(4 \mathrm{ab}\)
Hyperbola

120838 Asymptotes of a Hyperbola \(\frac{x^2}{25}-\frac{y^2}{16}=1\) are

1 \(x= \pm \frac{4}{5} y\)
2 \(y= \pm \frac{4}{5} x\)
3 \(x= \pm \frac{25}{16} y\)
4 \(y= \pm \frac{5}{4} x\)
Hyperbola

120839 Find the measure of angle between the asymptotes of \(x^2-y^2=16\).

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{3}\)
3 \(\frac{\pi}{6}\)
4 \(\frac{\pi}{2}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Hyperbola

120836 Equation of a tangent to the hyperbola \(5 x^2-y^2\) \(=5\) and which passes through an external point \((2,8)\) is

1 \(3 \mathrm{x}-\mathrm{y}+2=0\)
2 \(3 \mathrm{x}+\mathrm{y}-14=0\)
3 \(23 \mathrm{x}-3 \mathrm{y}-22=0\)
4 \(3 \mathrm{x}-23 \mathrm{y}+178=0\)
Hyperbola

120837 Consider the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) the area of the triangle formed by the asymptotes and the tangent drawn to it at \((a, 0)\) is

1 \(\frac{1}{2} \mathrm{ab}\)
2 ab
3 \(2 \mathrm{ab}\)
4 \(4 \mathrm{ab}\)
Hyperbola

120838 Asymptotes of a Hyperbola \(\frac{x^2}{25}-\frac{y^2}{16}=1\) are

1 \(x= \pm \frac{4}{5} y\)
2 \(y= \pm \frac{4}{5} x\)
3 \(x= \pm \frac{25}{16} y\)
4 \(y= \pm \frac{5}{4} x\)
Hyperbola

120839 Find the measure of angle between the asymptotes of \(x^2-y^2=16\).

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{3}\)
3 \(\frac{\pi}{6}\)
4 \(\frac{\pi}{2}\)