Tangent and Normal to Hyperbola
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Hyperbola

120780 The slope of common tangents of hyperbola \(\frac{x^2}{9}-\frac{y^2}{16}=1\) and \(\frac{y^2}{9}-\frac{x^2}{16}=1\) is

1 \(2,-2\)
2 \(1,-1\)
3 1,2
4 \(-1,-2\)
Hyperbola

120781 The equation of the tangent parallel to \(y-x+5\) \(=0\) drawn to \(\frac{x^2}{3}-\frac{y^2}{2}=1\) is

1 \(x-y+1=0\)
2 \(x-y+2=0\)
3 \(x+y-1=0\)
4 \(x+y+2=0\)
Hyperbola

120782 The equation of the normal to the hyperbola \(\frac{x^2}{16}-\frac{y^2}{9}=1\) at the point \((8,3 \sqrt{3})\) is

1 \(\sqrt{3} x+2 y=25\)
2 \(2 x+\sqrt{3} y=25\)
3 \(y+2 x=25\)
4 \(x+y=25\)
Hyperbola

120783 The equation of the normal to the hyperbola \(x^2-16 y^2-2 x-64 y-72=0\) at the point \((-4,-3)\) is

1 \(5 \mathrm{x}+16 \mathrm{y}+79=0\)
2 \(16 x+5 y+97=0\)
3 \(16 \mathrm{x}+5 \mathrm{y}+79=0\)
4 \(5 \mathrm{x}+16 \mathrm{y}+97=0\)
Hyperbola

120780 The slope of common tangents of hyperbola \(\frac{x^2}{9}-\frac{y^2}{16}=1\) and \(\frac{y^2}{9}-\frac{x^2}{16}=1\) is

1 \(2,-2\)
2 \(1,-1\)
3 1,2
4 \(-1,-2\)
Hyperbola

120781 The equation of the tangent parallel to \(y-x+5\) \(=0\) drawn to \(\frac{x^2}{3}-\frac{y^2}{2}=1\) is

1 \(x-y+1=0\)
2 \(x-y+2=0\)
3 \(x+y-1=0\)
4 \(x+y+2=0\)
Hyperbola

120782 The equation of the normal to the hyperbola \(\frac{x^2}{16}-\frac{y^2}{9}=1\) at the point \((8,3 \sqrt{3})\) is

1 \(\sqrt{3} x+2 y=25\)
2 \(2 x+\sqrt{3} y=25\)
3 \(y+2 x=25\)
4 \(x+y=25\)
Hyperbola

120783 The equation of the normal to the hyperbola \(x^2-16 y^2-2 x-64 y-72=0\) at the point \((-4,-3)\) is

1 \(5 \mathrm{x}+16 \mathrm{y}+79=0\)
2 \(16 x+5 y+97=0\)
3 \(16 \mathrm{x}+5 \mathrm{y}+79=0\)
4 \(5 \mathrm{x}+16 \mathrm{y}+97=0\)
Hyperbola

120780 The slope of common tangents of hyperbola \(\frac{x^2}{9}-\frac{y^2}{16}=1\) and \(\frac{y^2}{9}-\frac{x^2}{16}=1\) is

1 \(2,-2\)
2 \(1,-1\)
3 1,2
4 \(-1,-2\)
Hyperbola

120781 The equation of the tangent parallel to \(y-x+5\) \(=0\) drawn to \(\frac{x^2}{3}-\frac{y^2}{2}=1\) is

1 \(x-y+1=0\)
2 \(x-y+2=0\)
3 \(x+y-1=0\)
4 \(x+y+2=0\)
Hyperbola

120782 The equation of the normal to the hyperbola \(\frac{x^2}{16}-\frac{y^2}{9}=1\) at the point \((8,3 \sqrt{3})\) is

1 \(\sqrt{3} x+2 y=25\)
2 \(2 x+\sqrt{3} y=25\)
3 \(y+2 x=25\)
4 \(x+y=25\)
Hyperbola

120783 The equation of the normal to the hyperbola \(x^2-16 y^2-2 x-64 y-72=0\) at the point \((-4,-3)\) is

1 \(5 \mathrm{x}+16 \mathrm{y}+79=0\)
2 \(16 x+5 y+97=0\)
3 \(16 \mathrm{x}+5 \mathrm{y}+79=0\)
4 \(5 \mathrm{x}+16 \mathrm{y}+97=0\)
Hyperbola

120780 The slope of common tangents of hyperbola \(\frac{x^2}{9}-\frac{y^2}{16}=1\) and \(\frac{y^2}{9}-\frac{x^2}{16}=1\) is

1 \(2,-2\)
2 \(1,-1\)
3 1,2
4 \(-1,-2\)
Hyperbola

120781 The equation of the tangent parallel to \(y-x+5\) \(=0\) drawn to \(\frac{x^2}{3}-\frac{y^2}{2}=1\) is

1 \(x-y+1=0\)
2 \(x-y+2=0\)
3 \(x+y-1=0\)
4 \(x+y+2=0\)
Hyperbola

120782 The equation of the normal to the hyperbola \(\frac{x^2}{16}-\frac{y^2}{9}=1\) at the point \((8,3 \sqrt{3})\) is

1 \(\sqrt{3} x+2 y=25\)
2 \(2 x+\sqrt{3} y=25\)
3 \(y+2 x=25\)
4 \(x+y=25\)
Hyperbola

120783 The equation of the normal to the hyperbola \(x^2-16 y^2-2 x-64 y-72=0\) at the point \((-4,-3)\) is

1 \(5 \mathrm{x}+16 \mathrm{y}+79=0\)
2 \(16 x+5 y+97=0\)
3 \(16 \mathrm{x}+5 \mathrm{y}+79=0\)
4 \(5 \mathrm{x}+16 \mathrm{y}+97=0\)