Equation of Hyperbola
Hyperbola

120763 Let \(S\) be the focus of the hyperbola \(\frac{x^2}{16}-\frac{y^2}{9}=1\) lying on the positive \(X\) - axis and \(P\left(5, y_1\right)\) be point on the hyperbola. Then \(\mathrm{SP}=\)

1 \(\frac{1}{4}\)
2 \(\frac{3}{4}\)
3 \(\frac{9}{4}\)
4 \(\frac{5}{4}\)
Hyperbola

120764 The lines of the form \(x \cos \phi+y \sin \phi=\mathbf{P}\) are chords of the hyperbola \(4 x^2-y^2=4 a^2\) which subtend a right angle at the centre of the hyperbola. If these chords touch a circle with centre at \((0,0)\), then the radius of that circle is

1 \(\frac{2 a}{\sqrt{3}}\)
2 \(\frac{\mathrm{a}}{\sqrt{3}}\)
3 \(\sqrt{2 \mathrm{a}}\)
4 \(\frac{\mathrm{a}}{\sqrt{2}}\)
Hyperbola

120765 If the latus rectum of a hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) subtends an angle of \(60^{\circ}\) at the other focus, then the eccentricity of the hyperbola is

1 2
2 \(\frac{\sqrt{3}+1}{2}\)
3 \(2 \sqrt{3}\)
4 \(\sqrt{3}\)
Hyperbola

120766 If \((8,2)\) is a point on the hyperbola whose length of the transverse axis is 12 and conjugate axis is \(x=0\), then the eccentricity of that hyperbola is

1 \(\frac{2 \sqrt{2}}{7}\)
2 \(\frac{8}{5}\)
3 \(\frac{2 \sqrt{2}}{\sqrt{7}}\)
4 \(\frac{\sqrt{8}}{5}\)
Hyperbola

120763 Let \(S\) be the focus of the hyperbola \(\frac{x^2}{16}-\frac{y^2}{9}=1\) lying on the positive \(X\) - axis and \(P\left(5, y_1\right)\) be point on the hyperbola. Then \(\mathrm{SP}=\)

1 \(\frac{1}{4}\)
2 \(\frac{3}{4}\)
3 \(\frac{9}{4}\)
4 \(\frac{5}{4}\)
Hyperbola

120764 The lines of the form \(x \cos \phi+y \sin \phi=\mathbf{P}\) are chords of the hyperbola \(4 x^2-y^2=4 a^2\) which subtend a right angle at the centre of the hyperbola. If these chords touch a circle with centre at \((0,0)\), then the radius of that circle is

1 \(\frac{2 a}{\sqrt{3}}\)
2 \(\frac{\mathrm{a}}{\sqrt{3}}\)
3 \(\sqrt{2 \mathrm{a}}\)
4 \(\frac{\mathrm{a}}{\sqrt{2}}\)
Hyperbola

120765 If the latus rectum of a hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) subtends an angle of \(60^{\circ}\) at the other focus, then the eccentricity of the hyperbola is

1 2
2 \(\frac{\sqrt{3}+1}{2}\)
3 \(2 \sqrt{3}\)
4 \(\sqrt{3}\)
Hyperbola

120766 If \((8,2)\) is a point on the hyperbola whose length of the transverse axis is 12 and conjugate axis is \(x=0\), then the eccentricity of that hyperbola is

1 \(\frac{2 \sqrt{2}}{7}\)
2 \(\frac{8}{5}\)
3 \(\frac{2 \sqrt{2}}{\sqrt{7}}\)
4 \(\frac{\sqrt{8}}{5}\)
Hyperbola

120763 Let \(S\) be the focus of the hyperbola \(\frac{x^2}{16}-\frac{y^2}{9}=1\) lying on the positive \(X\) - axis and \(P\left(5, y_1\right)\) be point on the hyperbola. Then \(\mathrm{SP}=\)

1 \(\frac{1}{4}\)
2 \(\frac{3}{4}\)
3 \(\frac{9}{4}\)
4 \(\frac{5}{4}\)
Hyperbola

120764 The lines of the form \(x \cos \phi+y \sin \phi=\mathbf{P}\) are chords of the hyperbola \(4 x^2-y^2=4 a^2\) which subtend a right angle at the centre of the hyperbola. If these chords touch a circle with centre at \((0,0)\), then the radius of that circle is

1 \(\frac{2 a}{\sqrt{3}}\)
2 \(\frac{\mathrm{a}}{\sqrt{3}}\)
3 \(\sqrt{2 \mathrm{a}}\)
4 \(\frac{\mathrm{a}}{\sqrt{2}}\)
Hyperbola

120765 If the latus rectum of a hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) subtends an angle of \(60^{\circ}\) at the other focus, then the eccentricity of the hyperbola is

1 2
2 \(\frac{\sqrt{3}+1}{2}\)
3 \(2 \sqrt{3}\)
4 \(\sqrt{3}\)
Hyperbola

120766 If \((8,2)\) is a point on the hyperbola whose length of the transverse axis is 12 and conjugate axis is \(x=0\), then the eccentricity of that hyperbola is

1 \(\frac{2 \sqrt{2}}{7}\)
2 \(\frac{8}{5}\)
3 \(\frac{2 \sqrt{2}}{\sqrt{7}}\)
4 \(\frac{\sqrt{8}}{5}\)
Hyperbola

120763 Let \(S\) be the focus of the hyperbola \(\frac{x^2}{16}-\frac{y^2}{9}=1\) lying on the positive \(X\) - axis and \(P\left(5, y_1\right)\) be point on the hyperbola. Then \(\mathrm{SP}=\)

1 \(\frac{1}{4}\)
2 \(\frac{3}{4}\)
3 \(\frac{9}{4}\)
4 \(\frac{5}{4}\)
Hyperbola

120764 The lines of the form \(x \cos \phi+y \sin \phi=\mathbf{P}\) are chords of the hyperbola \(4 x^2-y^2=4 a^2\) which subtend a right angle at the centre of the hyperbola. If these chords touch a circle with centre at \((0,0)\), then the radius of that circle is

1 \(\frac{2 a}{\sqrt{3}}\)
2 \(\frac{\mathrm{a}}{\sqrt{3}}\)
3 \(\sqrt{2 \mathrm{a}}\)
4 \(\frac{\mathrm{a}}{\sqrt{2}}\)
Hyperbola

120765 If the latus rectum of a hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) subtends an angle of \(60^{\circ}\) at the other focus, then the eccentricity of the hyperbola is

1 2
2 \(\frac{\sqrt{3}+1}{2}\)
3 \(2 \sqrt{3}\)
4 \(\sqrt{3}\)
Hyperbola

120766 If \((8,2)\) is a point on the hyperbola whose length of the transverse axis is 12 and conjugate axis is \(x=0\), then the eccentricity of that hyperbola is

1 \(\frac{2 \sqrt{2}}{7}\)
2 \(\frac{8}{5}\)
3 \(\frac{2 \sqrt{2}}{\sqrt{7}}\)
4 \(\frac{\sqrt{8}}{5}\)