Equation of Hyperbola
Hyperbola

120719 The locus of a variable point whose chord of contact w.r.t the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) subtends a right angle at the origin is

1 \(\frac{x^2}{4 a^2}-\frac{y^2}{4 b^2}=1\)
2 \(\left(\frac{x^2}{a^2}-\frac{y^2}{b^2}\right)=\frac{x^2}{a^4}+\frac{y^2}{b^4}\)
3 \(\frac{\mathrm{x}}{\mathrm{a}}-\frac{\mathrm{y}}{\mathrm{b}}=\frac{1}{\mathrm{a}^2}+\frac{1}{\mathrm{~b}^2}\)
4 \(\frac{\mathrm{x}^2}{\mathrm{a}^4}+\frac{\mathrm{y}^2}{\mathrm{~b}^4}=\frac{1}{\mathrm{a}^2}-\frac{1}{\mathrm{~b}^2}\)
Hyperbola

120720 The equation of the transverse axis of hyperbola \((x-3)^2+(y+1)^2=(4 x+3 y)^2\) is

1 \(3 x+4 y=13\)
2 \(3 x-4 y=13\)
3 \(4 x-3 y=13\)
4 \(3 x-4 y=9\)
Hyperbola

120721 If the eccentricity of a hyperbola is \(\sqrt{3}\); then the eccentricity of its conjugate hyperbola is:

1 \(\sqrt{2}\)
2 \(\sqrt{3}\)
3 \(\sqrt{\frac{3}{2}}\)
4 \(2 \sqrt{3}\)
Hyperbola

120722 The eccentricity of the hyperbola \(9 x^2-16 y^2+\) \(72 x-32 y-16=0\) is

1 \(\frac{5}{4}\)
2 \(\frac{4}{5}\)
3 \(\frac{9}{16}\)
4 \(\frac{16}{9}\)
Hyperbola

120723 A hyperbola passing through a focus of the ellipse \(\frac{\mathbf{x}^2}{169}+\frac{y^2}{25}=1\). Its transverse and conjugate axes coincide respectively with the major and minor axes of the ellipse. The product of eccentricities is 1 . Then the equation of the hyperbola is

1 \(\frac{x^2}{144}-\frac{y^2}{9}=1\)
2 \(\frac{x^2}{169}-\frac{y^2}{25}=1\)
3 \(\frac{x^2}{144}-\frac{y^2}{25}=1\)
4 \(\frac{x^2}{25}-\frac{y^2}{9}=1\)
Hyperbola

120719 The locus of a variable point whose chord of contact w.r.t the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) subtends a right angle at the origin is

1 \(\frac{x^2}{4 a^2}-\frac{y^2}{4 b^2}=1\)
2 \(\left(\frac{x^2}{a^2}-\frac{y^2}{b^2}\right)=\frac{x^2}{a^4}+\frac{y^2}{b^4}\)
3 \(\frac{\mathrm{x}}{\mathrm{a}}-\frac{\mathrm{y}}{\mathrm{b}}=\frac{1}{\mathrm{a}^2}+\frac{1}{\mathrm{~b}^2}\)
4 \(\frac{\mathrm{x}^2}{\mathrm{a}^4}+\frac{\mathrm{y}^2}{\mathrm{~b}^4}=\frac{1}{\mathrm{a}^2}-\frac{1}{\mathrm{~b}^2}\)
Hyperbola

120720 The equation of the transverse axis of hyperbola \((x-3)^2+(y+1)^2=(4 x+3 y)^2\) is

1 \(3 x+4 y=13\)
2 \(3 x-4 y=13\)
3 \(4 x-3 y=13\)
4 \(3 x-4 y=9\)
Hyperbola

120721 If the eccentricity of a hyperbola is \(\sqrt{3}\); then the eccentricity of its conjugate hyperbola is:

1 \(\sqrt{2}\)
2 \(\sqrt{3}\)
3 \(\sqrt{\frac{3}{2}}\)
4 \(2 \sqrt{3}\)
Hyperbola

120722 The eccentricity of the hyperbola \(9 x^2-16 y^2+\) \(72 x-32 y-16=0\) is

1 \(\frac{5}{4}\)
2 \(\frac{4}{5}\)
3 \(\frac{9}{16}\)
4 \(\frac{16}{9}\)
Hyperbola

120723 A hyperbola passing through a focus of the ellipse \(\frac{\mathbf{x}^2}{169}+\frac{y^2}{25}=1\). Its transverse and conjugate axes coincide respectively with the major and minor axes of the ellipse. The product of eccentricities is 1 . Then the equation of the hyperbola is

1 \(\frac{x^2}{144}-\frac{y^2}{9}=1\)
2 \(\frac{x^2}{169}-\frac{y^2}{25}=1\)
3 \(\frac{x^2}{144}-\frac{y^2}{25}=1\)
4 \(\frac{x^2}{25}-\frac{y^2}{9}=1\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Hyperbola

120719 The locus of a variable point whose chord of contact w.r.t the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) subtends a right angle at the origin is

1 \(\frac{x^2}{4 a^2}-\frac{y^2}{4 b^2}=1\)
2 \(\left(\frac{x^2}{a^2}-\frac{y^2}{b^2}\right)=\frac{x^2}{a^4}+\frac{y^2}{b^4}\)
3 \(\frac{\mathrm{x}}{\mathrm{a}}-\frac{\mathrm{y}}{\mathrm{b}}=\frac{1}{\mathrm{a}^2}+\frac{1}{\mathrm{~b}^2}\)
4 \(\frac{\mathrm{x}^2}{\mathrm{a}^4}+\frac{\mathrm{y}^2}{\mathrm{~b}^4}=\frac{1}{\mathrm{a}^2}-\frac{1}{\mathrm{~b}^2}\)
Hyperbola

120720 The equation of the transverse axis of hyperbola \((x-3)^2+(y+1)^2=(4 x+3 y)^2\) is

1 \(3 x+4 y=13\)
2 \(3 x-4 y=13\)
3 \(4 x-3 y=13\)
4 \(3 x-4 y=9\)
Hyperbola

120721 If the eccentricity of a hyperbola is \(\sqrt{3}\); then the eccentricity of its conjugate hyperbola is:

1 \(\sqrt{2}\)
2 \(\sqrt{3}\)
3 \(\sqrt{\frac{3}{2}}\)
4 \(2 \sqrt{3}\)
Hyperbola

120722 The eccentricity of the hyperbola \(9 x^2-16 y^2+\) \(72 x-32 y-16=0\) is

1 \(\frac{5}{4}\)
2 \(\frac{4}{5}\)
3 \(\frac{9}{16}\)
4 \(\frac{16}{9}\)
Hyperbola

120723 A hyperbola passing through a focus of the ellipse \(\frac{\mathbf{x}^2}{169}+\frac{y^2}{25}=1\). Its transverse and conjugate axes coincide respectively with the major and minor axes of the ellipse. The product of eccentricities is 1 . Then the equation of the hyperbola is

1 \(\frac{x^2}{144}-\frac{y^2}{9}=1\)
2 \(\frac{x^2}{169}-\frac{y^2}{25}=1\)
3 \(\frac{x^2}{144}-\frac{y^2}{25}=1\)
4 \(\frac{x^2}{25}-\frac{y^2}{9}=1\)
Hyperbola

120719 The locus of a variable point whose chord of contact w.r.t the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) subtends a right angle at the origin is

1 \(\frac{x^2}{4 a^2}-\frac{y^2}{4 b^2}=1\)
2 \(\left(\frac{x^2}{a^2}-\frac{y^2}{b^2}\right)=\frac{x^2}{a^4}+\frac{y^2}{b^4}\)
3 \(\frac{\mathrm{x}}{\mathrm{a}}-\frac{\mathrm{y}}{\mathrm{b}}=\frac{1}{\mathrm{a}^2}+\frac{1}{\mathrm{~b}^2}\)
4 \(\frac{\mathrm{x}^2}{\mathrm{a}^4}+\frac{\mathrm{y}^2}{\mathrm{~b}^4}=\frac{1}{\mathrm{a}^2}-\frac{1}{\mathrm{~b}^2}\)
Hyperbola

120720 The equation of the transverse axis of hyperbola \((x-3)^2+(y+1)^2=(4 x+3 y)^2\) is

1 \(3 x+4 y=13\)
2 \(3 x-4 y=13\)
3 \(4 x-3 y=13\)
4 \(3 x-4 y=9\)
Hyperbola

120721 If the eccentricity of a hyperbola is \(\sqrt{3}\); then the eccentricity of its conjugate hyperbola is:

1 \(\sqrt{2}\)
2 \(\sqrt{3}\)
3 \(\sqrt{\frac{3}{2}}\)
4 \(2 \sqrt{3}\)
Hyperbola

120722 The eccentricity of the hyperbola \(9 x^2-16 y^2+\) \(72 x-32 y-16=0\) is

1 \(\frac{5}{4}\)
2 \(\frac{4}{5}\)
3 \(\frac{9}{16}\)
4 \(\frac{16}{9}\)
Hyperbola

120723 A hyperbola passing through a focus of the ellipse \(\frac{\mathbf{x}^2}{169}+\frac{y^2}{25}=1\). Its transverse and conjugate axes coincide respectively with the major and minor axes of the ellipse. The product of eccentricities is 1 . Then the equation of the hyperbola is

1 \(\frac{x^2}{144}-\frac{y^2}{9}=1\)
2 \(\frac{x^2}{169}-\frac{y^2}{25}=1\)
3 \(\frac{x^2}{144}-\frac{y^2}{25}=1\)
4 \(\frac{x^2}{25}-\frac{y^2}{9}=1\)
Hyperbola

120719 The locus of a variable point whose chord of contact w.r.t the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) subtends a right angle at the origin is

1 \(\frac{x^2}{4 a^2}-\frac{y^2}{4 b^2}=1\)
2 \(\left(\frac{x^2}{a^2}-\frac{y^2}{b^2}\right)=\frac{x^2}{a^4}+\frac{y^2}{b^4}\)
3 \(\frac{\mathrm{x}}{\mathrm{a}}-\frac{\mathrm{y}}{\mathrm{b}}=\frac{1}{\mathrm{a}^2}+\frac{1}{\mathrm{~b}^2}\)
4 \(\frac{\mathrm{x}^2}{\mathrm{a}^4}+\frac{\mathrm{y}^2}{\mathrm{~b}^4}=\frac{1}{\mathrm{a}^2}-\frac{1}{\mathrm{~b}^2}\)
Hyperbola

120720 The equation of the transverse axis of hyperbola \((x-3)^2+(y+1)^2=(4 x+3 y)^2\) is

1 \(3 x+4 y=13\)
2 \(3 x-4 y=13\)
3 \(4 x-3 y=13\)
4 \(3 x-4 y=9\)
Hyperbola

120721 If the eccentricity of a hyperbola is \(\sqrt{3}\); then the eccentricity of its conjugate hyperbola is:

1 \(\sqrt{2}\)
2 \(\sqrt{3}\)
3 \(\sqrt{\frac{3}{2}}\)
4 \(2 \sqrt{3}\)
Hyperbola

120722 The eccentricity of the hyperbola \(9 x^2-16 y^2+\) \(72 x-32 y-16=0\) is

1 \(\frac{5}{4}\)
2 \(\frac{4}{5}\)
3 \(\frac{9}{16}\)
4 \(\frac{16}{9}\)
Hyperbola

120723 A hyperbola passing through a focus of the ellipse \(\frac{\mathbf{x}^2}{169}+\frac{y^2}{25}=1\). Its transverse and conjugate axes coincide respectively with the major and minor axes of the ellipse. The product of eccentricities is 1 . Then the equation of the hyperbola is

1 \(\frac{x^2}{144}-\frac{y^2}{9}=1\)
2 \(\frac{x^2}{169}-\frac{y^2}{25}=1\)
3 \(\frac{x^2}{144}-\frac{y^2}{25}=1\)
4 \(\frac{x^2}{25}-\frac{y^2}{9}=1\)