Equation of Hyperbola
Hyperbola

120711 Let \(\mathrm{T}\) and \(\mathrm{C}\) respectively be the transverse and conjugate axes of the hyperbola \(16 x^2-y^2+64 x\) \(+4 y+44=0\). Then the area of the region above the parabola \(x^2=y+4\), below the transverse axis \(T\) and on the right of the conjugate axis \(C\) is :

1 \(4 \sqrt{6}+\frac{44}{3}\)
2 \(4 \sqrt{6}-\frac{28}{3}\)
3 \(4 \sqrt{6}+\frac{28}{3}\)
4 \(4 \sqrt{6}-\frac{44}{3}\)
Hyperbola

120712 If the line \(x-1=0\) is a directrix of the hyperbola \(\mathrm{kx}^2-\mathrm{y}^2=6\), then the hyperbola passes through the point

1 \((-2 \sqrt{5}, 6)\)
2 \((-\sqrt{5}, 3)\)
3 \((\sqrt{5},-2)\)
4 \((2 \sqrt{5}, 3 \sqrt{6})\)
Hyperbola

120713 Let \(H\) be the hyperbola, whose foci are \((1 \pm \sqrt{2}, 0)\) and eccentricity is \(\sqrt{2}\). Then the length of its latus rectum is :

1 3
2 \(\frac{5}{2}\)
3 2
4 \(\frac{3}{2}\)
Hyperbola

120714 If \(e\) and \(e^{\prime}\) are the eccentricities of the ellipse \(5 x^2+9 y^2=45\) and the hyperbola \(5 x^2-4 y^2=45\) respectively, the ee' is equal to

1 1
2 4
3 5
4 9
Hyperbola

120711 Let \(\mathrm{T}\) and \(\mathrm{C}\) respectively be the transverse and conjugate axes of the hyperbola \(16 x^2-y^2+64 x\) \(+4 y+44=0\). Then the area of the region above the parabola \(x^2=y+4\), below the transverse axis \(T\) and on the right of the conjugate axis \(C\) is :

1 \(4 \sqrt{6}+\frac{44}{3}\)
2 \(4 \sqrt{6}-\frac{28}{3}\)
3 \(4 \sqrt{6}+\frac{28}{3}\)
4 \(4 \sqrt{6}-\frac{44}{3}\)
Hyperbola

120712 If the line \(x-1=0\) is a directrix of the hyperbola \(\mathrm{kx}^2-\mathrm{y}^2=6\), then the hyperbola passes through the point

1 \((-2 \sqrt{5}, 6)\)
2 \((-\sqrt{5}, 3)\)
3 \((\sqrt{5},-2)\)
4 \((2 \sqrt{5}, 3 \sqrt{6})\)
Hyperbola

120713 Let \(H\) be the hyperbola, whose foci are \((1 \pm \sqrt{2}, 0)\) and eccentricity is \(\sqrt{2}\). Then the length of its latus rectum is :

1 3
2 \(\frac{5}{2}\)
3 2
4 \(\frac{3}{2}\)
Hyperbola

120714 If \(e\) and \(e^{\prime}\) are the eccentricities of the ellipse \(5 x^2+9 y^2=45\) and the hyperbola \(5 x^2-4 y^2=45\) respectively, the ee' is equal to

1 1
2 4
3 5
4 9
Hyperbola

120711 Let \(\mathrm{T}\) and \(\mathrm{C}\) respectively be the transverse and conjugate axes of the hyperbola \(16 x^2-y^2+64 x\) \(+4 y+44=0\). Then the area of the region above the parabola \(x^2=y+4\), below the transverse axis \(T\) and on the right of the conjugate axis \(C\) is :

1 \(4 \sqrt{6}+\frac{44}{3}\)
2 \(4 \sqrt{6}-\frac{28}{3}\)
3 \(4 \sqrt{6}+\frac{28}{3}\)
4 \(4 \sqrt{6}-\frac{44}{3}\)
Hyperbola

120712 If the line \(x-1=0\) is a directrix of the hyperbola \(\mathrm{kx}^2-\mathrm{y}^2=6\), then the hyperbola passes through the point

1 \((-2 \sqrt{5}, 6)\)
2 \((-\sqrt{5}, 3)\)
3 \((\sqrt{5},-2)\)
4 \((2 \sqrt{5}, 3 \sqrt{6})\)
Hyperbola

120713 Let \(H\) be the hyperbola, whose foci are \((1 \pm \sqrt{2}, 0)\) and eccentricity is \(\sqrt{2}\). Then the length of its latus rectum is :

1 3
2 \(\frac{5}{2}\)
3 2
4 \(\frac{3}{2}\)
Hyperbola

120714 If \(e\) and \(e^{\prime}\) are the eccentricities of the ellipse \(5 x^2+9 y^2=45\) and the hyperbola \(5 x^2-4 y^2=45\) respectively, the ee' is equal to

1 1
2 4
3 5
4 9
Hyperbola

120711 Let \(\mathrm{T}\) and \(\mathrm{C}\) respectively be the transverse and conjugate axes of the hyperbola \(16 x^2-y^2+64 x\) \(+4 y+44=0\). Then the area of the region above the parabola \(x^2=y+4\), below the transverse axis \(T\) and on the right of the conjugate axis \(C\) is :

1 \(4 \sqrt{6}+\frac{44}{3}\)
2 \(4 \sqrt{6}-\frac{28}{3}\)
3 \(4 \sqrt{6}+\frac{28}{3}\)
4 \(4 \sqrt{6}-\frac{44}{3}\)
Hyperbola

120712 If the line \(x-1=0\) is a directrix of the hyperbola \(\mathrm{kx}^2-\mathrm{y}^2=6\), then the hyperbola passes through the point

1 \((-2 \sqrt{5}, 6)\)
2 \((-\sqrt{5}, 3)\)
3 \((\sqrt{5},-2)\)
4 \((2 \sqrt{5}, 3 \sqrt{6})\)
Hyperbola

120713 Let \(H\) be the hyperbola, whose foci are \((1 \pm \sqrt{2}, 0)\) and eccentricity is \(\sqrt{2}\). Then the length of its latus rectum is :

1 3
2 \(\frac{5}{2}\)
3 2
4 \(\frac{3}{2}\)
Hyperbola

120714 If \(e\) and \(e^{\prime}\) are the eccentricities of the ellipse \(5 x^2+9 y^2=45\) and the hyperbola \(5 x^2-4 y^2=45\) respectively, the ee' is equal to

1 1
2 4
3 5
4 9