Equation of Hyperbola
Hyperbola

120680 If the eccentricity of a hyperbola is \(5 / 3\), then the eccentricity of its conjugate is

1 \(5 / 3\)
2 \(5 / 4\)
3 5
4 non existent
Hyperbola

120681 The equation of auxiliary circle of the hyperbola \(\frac{x^2}{4}-\frac{y^2}{9}=1\) is

1 \(x^2+y^2=4\)
2 \(x^2+y^2=9\)
3 \(x^2+y^2=13\)
4 \(x^2+y^2=5\)
Hyperbola

120682 If the latus rectum of a hyperbola subtends a right angle at the other focus, then its eccentricity is

1 \(\sqrt{3}+1\)
2 \(\sqrt{2}+1\)
3 \(\sqrt{3}+\sqrt{2}\)
4 2
Hyperbola

120683 Find the coordinates of the foci and the length of the latus rectum of the hyperbola \(\frac{x^2}{9}-\frac{y^2}{16}=1\).

1 \((0, \pm 2), \frac{32}{3}\)
2 \((0, \pm 5), \frac{32}{3}\)
3 \(( \pm 5,0), \frac{32}{3}\)
4 \((0, \pm 5), \frac{3}{32}\)
Hyperbola

120680 If the eccentricity of a hyperbola is \(5 / 3\), then the eccentricity of its conjugate is

1 \(5 / 3\)
2 \(5 / 4\)
3 5
4 non existent
Hyperbola

120681 The equation of auxiliary circle of the hyperbola \(\frac{x^2}{4}-\frac{y^2}{9}=1\) is

1 \(x^2+y^2=4\)
2 \(x^2+y^2=9\)
3 \(x^2+y^2=13\)
4 \(x^2+y^2=5\)
Hyperbola

120682 If the latus rectum of a hyperbola subtends a right angle at the other focus, then its eccentricity is

1 \(\sqrt{3}+1\)
2 \(\sqrt{2}+1\)
3 \(\sqrt{3}+\sqrt{2}\)
4 2
Hyperbola

120683 Find the coordinates of the foci and the length of the latus rectum of the hyperbola \(\frac{x^2}{9}-\frac{y^2}{16}=1\).

1 \((0, \pm 2), \frac{32}{3}\)
2 \((0, \pm 5), \frac{32}{3}\)
3 \(( \pm 5,0), \frac{32}{3}\)
4 \((0, \pm 5), \frac{3}{32}\)
Hyperbola

120680 If the eccentricity of a hyperbola is \(5 / 3\), then the eccentricity of its conjugate is

1 \(5 / 3\)
2 \(5 / 4\)
3 5
4 non existent
Hyperbola

120681 The equation of auxiliary circle of the hyperbola \(\frac{x^2}{4}-\frac{y^2}{9}=1\) is

1 \(x^2+y^2=4\)
2 \(x^2+y^2=9\)
3 \(x^2+y^2=13\)
4 \(x^2+y^2=5\)
Hyperbola

120682 If the latus rectum of a hyperbola subtends a right angle at the other focus, then its eccentricity is

1 \(\sqrt{3}+1\)
2 \(\sqrt{2}+1\)
3 \(\sqrt{3}+\sqrt{2}\)
4 2
Hyperbola

120683 Find the coordinates of the foci and the length of the latus rectum of the hyperbola \(\frac{x^2}{9}-\frac{y^2}{16}=1\).

1 \((0, \pm 2), \frac{32}{3}\)
2 \((0, \pm 5), \frac{32}{3}\)
3 \(( \pm 5,0), \frac{32}{3}\)
4 \((0, \pm 5), \frac{3}{32}\)
Hyperbola

120680 If the eccentricity of a hyperbola is \(5 / 3\), then the eccentricity of its conjugate is

1 \(5 / 3\)
2 \(5 / 4\)
3 5
4 non existent
Hyperbola

120681 The equation of auxiliary circle of the hyperbola \(\frac{x^2}{4}-\frac{y^2}{9}=1\) is

1 \(x^2+y^2=4\)
2 \(x^2+y^2=9\)
3 \(x^2+y^2=13\)
4 \(x^2+y^2=5\)
Hyperbola

120682 If the latus rectum of a hyperbola subtends a right angle at the other focus, then its eccentricity is

1 \(\sqrt{3}+1\)
2 \(\sqrt{2}+1\)
3 \(\sqrt{3}+\sqrt{2}\)
4 2
Hyperbola

120683 Find the coordinates of the foci and the length of the latus rectum of the hyperbola \(\frac{x^2}{9}-\frac{y^2}{16}=1\).

1 \((0, \pm 2), \frac{32}{3}\)
2 \((0, \pm 5), \frac{32}{3}\)
3 \(( \pm 5,0), \frac{32}{3}\)
4 \((0, \pm 5), \frac{3}{32}\)