Tangent and Normal to Ellipse
Ellipse

120642 If the tangent at a point P one the parabola y2= 3x is parallel to the line x+2y=1 and tangents at the point Q and R on the ellipse x24+y21=1 are perpendicular to the line xy= 2, then the area of the triangle PQR is:

1 35
2 95
3 325
4 53
Ellipse

120643 Let a circle of radius 4 be concentric to the ellipse 15x2+19y2=285. Then the common tangents are inclined to the minor axis of the ellipse at the angle.
#[Qdiff: Hard, QCat: Numerical Based, examname: AP EAMCET-21.04.2019,Shift-I], So, Hence, Where, x2a2+y2 b2=1, On comparing standard ellipse equation, a2=19, b2=15, Equation of tangent of ellipse is -, y=mx+19 m2+15, mxy±19 m2+15=0, Perpendicular distance from centre of circle to tangent =, 4, |±19 m2+15m2+1|=4, 19 m2+15=16 m2+16,  m=±13, tanθ=m=13, θ=π6 with x-axis or π3 with y-axis, the common tangents are inclined to the minor axis of the ellipse at an angle of π3., 911. If the tangent drawn to the parabola y2=4x at (t2,2t) is the normal to the ellipse 4x2+5y2=20 at (5cosθ,2sinθ), then,

1 π4
2 π3
3 π12
4 π6
Ellipse

120645 If the tangent at the point (1,2) on the ellipse 3x2+4y2=19 is also a tangent to the parabola y2kx=0, then k=

1 5716
2 5764
3 5764
4 5716
Ellipse

120642 If the tangent at a point P one the parabola y2= 3x is parallel to the line x+2y=1 and tangents at the point Q and R on the ellipse x24+y21=1 are perpendicular to the line xy= 2, then the area of the triangle PQR is:

1 35
2 95
3 325
4 53
Ellipse

120643 Let a circle of radius 4 be concentric to the ellipse 15x2+19y2=285. Then the common tangents are inclined to the minor axis of the ellipse at the angle.
#[Qdiff: Hard, QCat: Numerical Based, examname: AP EAMCET-21.04.2019,Shift-I], So, Hence, Where, x2a2+y2 b2=1, On comparing standard ellipse equation, a2=19, b2=15, Equation of tangent of ellipse is -, y=mx+19 m2+15, mxy±19 m2+15=0, Perpendicular distance from centre of circle to tangent =, 4, |±19 m2+15m2+1|=4, 19 m2+15=16 m2+16,  m=±13, tanθ=m=13, θ=π6 with x-axis or π3 with y-axis, the common tangents are inclined to the minor axis of the ellipse at an angle of π3., 911. If the tangent drawn to the parabola y2=4x at (t2,2t) is the normal to the ellipse 4x2+5y2=20 at (5cosθ,2sinθ), then,

1 π4
2 π3
3 π12
4 π6
Ellipse

120644 The value of ' k ' so that the line y=2x+k may touch the ellipse 3x2+5y2=15 is

1 ±23
2 ±13
3 ±33
4 ±32
Ellipse

120645 If the tangent at the point (1,2) on the ellipse 3x2+4y2=19 is also a tangent to the parabola y2kx=0, then k=

1 5716
2 5764
3 5764
4 5716
Ellipse

120642 If the tangent at a point P one the parabola y2= 3x is parallel to the line x+2y=1 and tangents at the point Q and R on the ellipse x24+y21=1 are perpendicular to the line xy= 2, then the area of the triangle PQR is:

1 35
2 95
3 325
4 53
Ellipse

120643 Let a circle of radius 4 be concentric to the ellipse 15x2+19y2=285. Then the common tangents are inclined to the minor axis of the ellipse at the angle.
#[Qdiff: Hard, QCat: Numerical Based, examname: AP EAMCET-21.04.2019,Shift-I], So, Hence, Where, x2a2+y2 b2=1, On comparing standard ellipse equation, a2=19, b2=15, Equation of tangent of ellipse is -, y=mx+19 m2+15, mxy±19 m2+15=0, Perpendicular distance from centre of circle to tangent =, 4, |±19 m2+15m2+1|=4, 19 m2+15=16 m2+16,  m=±13, tanθ=m=13, θ=π6 with x-axis or π3 with y-axis, the common tangents are inclined to the minor axis of the ellipse at an angle of π3., 911. If the tangent drawn to the parabola y2=4x at (t2,2t) is the normal to the ellipse 4x2+5y2=20 at (5cosθ,2sinθ), then,

1 π4
2 π3
3 π12
4 π6
Ellipse

120644 The value of ' k ' so that the line y=2x+k may touch the ellipse 3x2+5y2=15 is

1 ±23
2 ±13
3 ±33
4 ±32
Ellipse

120645 If the tangent at the point (1,2) on the ellipse 3x2+4y2=19 is also a tangent to the parabola y2kx=0, then k=

1 5716
2 5764
3 5764
4 5716
Ellipse

120642 If the tangent at a point P one the parabola y2= 3x is parallel to the line x+2y=1 and tangents at the point Q and R on the ellipse x24+y21=1 are perpendicular to the line xy= 2, then the area of the triangle PQR is:

1 35
2 95
3 325
4 53
Ellipse

120643 Let a circle of radius 4 be concentric to the ellipse 15x2+19y2=285. Then the common tangents are inclined to the minor axis of the ellipse at the angle.
#[Qdiff: Hard, QCat: Numerical Based, examname: AP EAMCET-21.04.2019,Shift-I], So, Hence, Where, x2a2+y2 b2=1, On comparing standard ellipse equation, a2=19, b2=15, Equation of tangent of ellipse is -, y=mx+19 m2+15, mxy±19 m2+15=0, Perpendicular distance from centre of circle to tangent =, 4, |±19 m2+15m2+1|=4, 19 m2+15=16 m2+16,  m=±13, tanθ=m=13, θ=π6 with x-axis or π3 with y-axis, the common tangents are inclined to the minor axis of the ellipse at an angle of π3., 911. If the tangent drawn to the parabola y2=4x at (t2,2t) is the normal to the ellipse 4x2+5y2=20 at (5cosθ,2sinθ), then,

1 π4
2 π3
3 π12
4 π6
Ellipse

120644 The value of ' k ' so that the line y=2x+k may touch the ellipse 3x2+5y2=15 is

1 ±23
2 ±13
3 ±33
4 ±32
Ellipse

120645 If the tangent at the point (1,2) on the ellipse 3x2+4y2=19 is also a tangent to the parabola y2kx=0, then k=

1 5716
2 5764
3 5764
4 5716