120631 Let \(S \equiv \frac{x^2}{a^2}+\frac{y^2}{b^2}-1=0, S^{\prime} \equiv \frac{x^2}{\alpha^2}+\frac{y^2}{\beta^2}-1=0\) be two intersecting ellipses. If \(P(\operatorname{acos} \theta, b \sin \theta)\) and \(Q\left(\operatorname{acos}\left(\frac{\pi}{2}+\theta\right), b \sin \left(\frac{\pi}{2}+\theta\right)\right)\) are their points of intersection then \(\frac{1}{2}\left(a^2 \beta^2+b^2 \alpha^2\right)=\)
120631 Let \(S \equiv \frac{x^2}{a^2}+\frac{y^2}{b^2}-1=0, S^{\prime} \equiv \frac{x^2}{\alpha^2}+\frac{y^2}{\beta^2}-1=0\) be two intersecting ellipses. If \(P(\operatorname{acos} \theta, b \sin \theta)\) and \(Q\left(\operatorname{acos}\left(\frac{\pi}{2}+\theta\right), b \sin \left(\frac{\pi}{2}+\theta\right)\right)\) are their points of intersection then \(\frac{1}{2}\left(a^2 \beta^2+b^2 \alpha^2\right)=\)
120631 Let \(S \equiv \frac{x^2}{a^2}+\frac{y^2}{b^2}-1=0, S^{\prime} \equiv \frac{x^2}{\alpha^2}+\frac{y^2}{\beta^2}-1=0\) be two intersecting ellipses. If \(P(\operatorname{acos} \theta, b \sin \theta)\) and \(Q\left(\operatorname{acos}\left(\frac{\pi}{2}+\theta\right), b \sin \left(\frac{\pi}{2}+\theta\right)\right)\) are their points of intersection then \(\frac{1}{2}\left(a^2 \beta^2+b^2 \alpha^2\right)=\)
120631 Let \(S \equiv \frac{x^2}{a^2}+\frac{y^2}{b^2}-1=0, S^{\prime} \equiv \frac{x^2}{\alpha^2}+\frac{y^2}{\beta^2}-1=0\) be two intersecting ellipses. If \(P(\operatorname{acos} \theta, b \sin \theta)\) and \(Q\left(\operatorname{acos}\left(\frac{\pi}{2}+\theta\right), b \sin \left(\frac{\pi}{2}+\theta\right)\right)\) are their points of intersection then \(\frac{1}{2}\left(a^2 \beta^2+b^2 \alpha^2\right)=\)
120631 Let \(S \equiv \frac{x^2}{a^2}+\frac{y^2}{b^2}-1=0, S^{\prime} \equiv \frac{x^2}{\alpha^2}+\frac{y^2}{\beta^2}-1=0\) be two intersecting ellipses. If \(P(\operatorname{acos} \theta, b \sin \theta)\) and \(Q\left(\operatorname{acos}\left(\frac{\pi}{2}+\theta\right), b \sin \left(\frac{\pi}{2}+\theta\right)\right)\) are their points of intersection then \(\frac{1}{2}\left(a^2 \beta^2+b^2 \alpha^2\right)=\)