Parametric Form of Ellipse
Ellipse

120631 Let \(S \equiv \frac{x^2}{a^2}+\frac{y^2}{b^2}-1=0, S^{\prime} \equiv \frac{x^2}{\alpha^2}+\frac{y^2}{\beta^2}-1=0\) be two intersecting ellipses. If \(P(\operatorname{acos} \theta, b \sin \theta)\) and \(Q\left(\operatorname{acos}\left(\frac{\pi}{2}+\theta\right), b \sin \left(\frac{\pi}{2}+\theta\right)\right)\) are their points of intersection then \(\frac{1}{2}\left(a^2 \beta^2+b^2 \alpha^2\right)=\)

1 \(a^2 b^2\)
2 \(\alpha^2+\beta^2\)
3 \(\mathrm{a}^2+\mathrm{b}^2\)
4 \(\alpha^2 \beta^2\)
Ellipse

120632 Let \(P\left(\frac{\pi}{4}\right), Q\left(\frac{5 \pi}{4}\right), R\left(\frac{3 \pi}{4}\right), T\left(\frac{7 \pi}{4}\right)\) be the points on the hyperbola \(x^2-4 y^2-4=0\) in the parametric form. Then the area of the quadrilateral PQRT is (in square units)

1 \(4 \sqrt{2}\)
2 \(16 \sqrt{2}\)
3 \(32 \sqrt{2}\)
4 \(8 \sqrt{2}\)
Ellipse

120633 The end points of the major axis of an ellipse are \((2,4)\) and \((2,-8)\). If the distance between foci of this ellipse is 4 , then the equation of the ellipse is

1 \(\frac{(x-2)^2}{32}+\frac{(y+2)^2}{36}=1\)
2 \(\frac{(x-4)^2}{32}+\frac{(y+2)^2}{36}=1\)
3 \(\frac{(x-2)^2}{36}+\frac{(y+2)^2}{32}=1\)
4 \(\frac{(x-2)^2}{36}+\frac{(y-4)^2}{32}=1\)
5 \(\frac{(x-2)^2}{36}+\frac{(y-4)^2}{32}=1\)
Ellipse

120634 If \(x=h+a \sec \theta\) and \(y=k+b \operatorname{cosec} \theta\). Then

1 \(\frac{\mathrm{a}^2}{(\mathrm{x}+\mathrm{h})^2}-\frac{\mathrm{b}^2}{(\mathrm{y}+\mathrm{k})^2}=1\)
2 \(\frac{\mathrm{a}^2}{(\mathrm{x}-\mathrm{h})^2}+\frac{\mathrm{b}^2}{(\mathrm{y}-\mathrm{k})^2}=1\)
3 \(\frac{(\mathrm{x}-\mathrm{h})^2}{\mathrm{a}^2}+\frac{(\mathrm{y}-\mathrm{k})^2}{\mathrm{~b}^2}=1\)
4 \(\frac{(\mathrm{x}-\mathrm{h})^2}{\mathrm{a}^2}-\frac{(\mathrm{y}-\mathrm{k})^2}{\mathrm{~b}^2}=1\)
5 \(x^2+y^2=a^2+b^2\)
Ellipse

120635 The parametric representation of a point on the ellipse whose foci are \((3,0)\) and \((-1,0)\) and eccentricity \(2 / 3\), is

1 \((1+3 \cos \theta, \sqrt{3} \sin \theta)\)
2 \((1+3 \cos \theta, 5 \sin \theta)\)
3 \((1+3 \cos \theta, 1+\sqrt{5} \sin \theta)\)
4 \((1+3 \cos \theta, 1+5 \sin \theta)\)
5 \((1+3 \cos \theta, \sqrt{5} \sin \theta)\)
Ellipse

120631 Let \(S \equiv \frac{x^2}{a^2}+\frac{y^2}{b^2}-1=0, S^{\prime} \equiv \frac{x^2}{\alpha^2}+\frac{y^2}{\beta^2}-1=0\) be two intersecting ellipses. If \(P(\operatorname{acos} \theta, b \sin \theta)\) and \(Q\left(\operatorname{acos}\left(\frac{\pi}{2}+\theta\right), b \sin \left(\frac{\pi}{2}+\theta\right)\right)\) are their points of intersection then \(\frac{1}{2}\left(a^2 \beta^2+b^2 \alpha^2\right)=\)

1 \(a^2 b^2\)
2 \(\alpha^2+\beta^2\)
3 \(\mathrm{a}^2+\mathrm{b}^2\)
4 \(\alpha^2 \beta^2\)
Ellipse

120632 Let \(P\left(\frac{\pi}{4}\right), Q\left(\frac{5 \pi}{4}\right), R\left(\frac{3 \pi}{4}\right), T\left(\frac{7 \pi}{4}\right)\) be the points on the hyperbola \(x^2-4 y^2-4=0\) in the parametric form. Then the area of the quadrilateral PQRT is (in square units)

1 \(4 \sqrt{2}\)
2 \(16 \sqrt{2}\)
3 \(32 \sqrt{2}\)
4 \(8 \sqrt{2}\)
Ellipse

120633 The end points of the major axis of an ellipse are \((2,4)\) and \((2,-8)\). If the distance between foci of this ellipse is 4 , then the equation of the ellipse is

1 \(\frac{(x-2)^2}{32}+\frac{(y+2)^2}{36}=1\)
2 \(\frac{(x-4)^2}{32}+\frac{(y+2)^2}{36}=1\)
3 \(\frac{(x-2)^2}{36}+\frac{(y+2)^2}{32}=1\)
4 \(\frac{(x-2)^2}{36}+\frac{(y-4)^2}{32}=1\)
5 \(\frac{(x-2)^2}{36}+\frac{(y-4)^2}{32}=1\)
Ellipse

120634 If \(x=h+a \sec \theta\) and \(y=k+b \operatorname{cosec} \theta\). Then

1 \(\frac{\mathrm{a}^2}{(\mathrm{x}+\mathrm{h})^2}-\frac{\mathrm{b}^2}{(\mathrm{y}+\mathrm{k})^2}=1\)
2 \(\frac{\mathrm{a}^2}{(\mathrm{x}-\mathrm{h})^2}+\frac{\mathrm{b}^2}{(\mathrm{y}-\mathrm{k})^2}=1\)
3 \(\frac{(\mathrm{x}-\mathrm{h})^2}{\mathrm{a}^2}+\frac{(\mathrm{y}-\mathrm{k})^2}{\mathrm{~b}^2}=1\)
4 \(\frac{(\mathrm{x}-\mathrm{h})^2}{\mathrm{a}^2}-\frac{(\mathrm{y}-\mathrm{k})^2}{\mathrm{~b}^2}=1\)
5 \(x^2+y^2=a^2+b^2\)
Ellipse

120635 The parametric representation of a point on the ellipse whose foci are \((3,0)\) and \((-1,0)\) and eccentricity \(2 / 3\), is

1 \((1+3 \cos \theta, \sqrt{3} \sin \theta)\)
2 \((1+3 \cos \theta, 5 \sin \theta)\)
3 \((1+3 \cos \theta, 1+\sqrt{5} \sin \theta)\)
4 \((1+3 \cos \theta, 1+5 \sin \theta)\)
5 \((1+3 \cos \theta, \sqrt{5} \sin \theta)\)
Ellipse

120631 Let \(S \equiv \frac{x^2}{a^2}+\frac{y^2}{b^2}-1=0, S^{\prime} \equiv \frac{x^2}{\alpha^2}+\frac{y^2}{\beta^2}-1=0\) be two intersecting ellipses. If \(P(\operatorname{acos} \theta, b \sin \theta)\) and \(Q\left(\operatorname{acos}\left(\frac{\pi}{2}+\theta\right), b \sin \left(\frac{\pi}{2}+\theta\right)\right)\) are their points of intersection then \(\frac{1}{2}\left(a^2 \beta^2+b^2 \alpha^2\right)=\)

1 \(a^2 b^2\)
2 \(\alpha^2+\beta^2\)
3 \(\mathrm{a}^2+\mathrm{b}^2\)
4 \(\alpha^2 \beta^2\)
Ellipse

120632 Let \(P\left(\frac{\pi}{4}\right), Q\left(\frac{5 \pi}{4}\right), R\left(\frac{3 \pi}{4}\right), T\left(\frac{7 \pi}{4}\right)\) be the points on the hyperbola \(x^2-4 y^2-4=0\) in the parametric form. Then the area of the quadrilateral PQRT is (in square units)

1 \(4 \sqrt{2}\)
2 \(16 \sqrt{2}\)
3 \(32 \sqrt{2}\)
4 \(8 \sqrt{2}\)
Ellipse

120633 The end points of the major axis of an ellipse are \((2,4)\) and \((2,-8)\). If the distance between foci of this ellipse is 4 , then the equation of the ellipse is

1 \(\frac{(x-2)^2}{32}+\frac{(y+2)^2}{36}=1\)
2 \(\frac{(x-4)^2}{32}+\frac{(y+2)^2}{36}=1\)
3 \(\frac{(x-2)^2}{36}+\frac{(y+2)^2}{32}=1\)
4 \(\frac{(x-2)^2}{36}+\frac{(y-4)^2}{32}=1\)
5 \(\frac{(x-2)^2}{36}+\frac{(y-4)^2}{32}=1\)
Ellipse

120634 If \(x=h+a \sec \theta\) and \(y=k+b \operatorname{cosec} \theta\). Then

1 \(\frac{\mathrm{a}^2}{(\mathrm{x}+\mathrm{h})^2}-\frac{\mathrm{b}^2}{(\mathrm{y}+\mathrm{k})^2}=1\)
2 \(\frac{\mathrm{a}^2}{(\mathrm{x}-\mathrm{h})^2}+\frac{\mathrm{b}^2}{(\mathrm{y}-\mathrm{k})^2}=1\)
3 \(\frac{(\mathrm{x}-\mathrm{h})^2}{\mathrm{a}^2}+\frac{(\mathrm{y}-\mathrm{k})^2}{\mathrm{~b}^2}=1\)
4 \(\frac{(\mathrm{x}-\mathrm{h})^2}{\mathrm{a}^2}-\frac{(\mathrm{y}-\mathrm{k})^2}{\mathrm{~b}^2}=1\)
5 \(x^2+y^2=a^2+b^2\)
Ellipse

120635 The parametric representation of a point on the ellipse whose foci are \((3,0)\) and \((-1,0)\) and eccentricity \(2 / 3\), is

1 \((1+3 \cos \theta, \sqrt{3} \sin \theta)\)
2 \((1+3 \cos \theta, 5 \sin \theta)\)
3 \((1+3 \cos \theta, 1+\sqrt{5} \sin \theta)\)
4 \((1+3 \cos \theta, 1+5 \sin \theta)\)
5 \((1+3 \cos \theta, \sqrt{5} \sin \theta)\)
Ellipse

120631 Let \(S \equiv \frac{x^2}{a^2}+\frac{y^2}{b^2}-1=0, S^{\prime} \equiv \frac{x^2}{\alpha^2}+\frac{y^2}{\beta^2}-1=0\) be two intersecting ellipses. If \(P(\operatorname{acos} \theta, b \sin \theta)\) and \(Q\left(\operatorname{acos}\left(\frac{\pi}{2}+\theta\right), b \sin \left(\frac{\pi}{2}+\theta\right)\right)\) are their points of intersection then \(\frac{1}{2}\left(a^2 \beta^2+b^2 \alpha^2\right)=\)

1 \(a^2 b^2\)
2 \(\alpha^2+\beta^2\)
3 \(\mathrm{a}^2+\mathrm{b}^2\)
4 \(\alpha^2 \beta^2\)
Ellipse

120632 Let \(P\left(\frac{\pi}{4}\right), Q\left(\frac{5 \pi}{4}\right), R\left(\frac{3 \pi}{4}\right), T\left(\frac{7 \pi}{4}\right)\) be the points on the hyperbola \(x^2-4 y^2-4=0\) in the parametric form. Then the area of the quadrilateral PQRT is (in square units)

1 \(4 \sqrt{2}\)
2 \(16 \sqrt{2}\)
3 \(32 \sqrt{2}\)
4 \(8 \sqrt{2}\)
Ellipse

120633 The end points of the major axis of an ellipse are \((2,4)\) and \((2,-8)\). If the distance between foci of this ellipse is 4 , then the equation of the ellipse is

1 \(\frac{(x-2)^2}{32}+\frac{(y+2)^2}{36}=1\)
2 \(\frac{(x-4)^2}{32}+\frac{(y+2)^2}{36}=1\)
3 \(\frac{(x-2)^2}{36}+\frac{(y+2)^2}{32}=1\)
4 \(\frac{(x-2)^2}{36}+\frac{(y-4)^2}{32}=1\)
5 \(\frac{(x-2)^2}{36}+\frac{(y-4)^2}{32}=1\)
Ellipse

120634 If \(x=h+a \sec \theta\) and \(y=k+b \operatorname{cosec} \theta\). Then

1 \(\frac{\mathrm{a}^2}{(\mathrm{x}+\mathrm{h})^2}-\frac{\mathrm{b}^2}{(\mathrm{y}+\mathrm{k})^2}=1\)
2 \(\frac{\mathrm{a}^2}{(\mathrm{x}-\mathrm{h})^2}+\frac{\mathrm{b}^2}{(\mathrm{y}-\mathrm{k})^2}=1\)
3 \(\frac{(\mathrm{x}-\mathrm{h})^2}{\mathrm{a}^2}+\frac{(\mathrm{y}-\mathrm{k})^2}{\mathrm{~b}^2}=1\)
4 \(\frac{(\mathrm{x}-\mathrm{h})^2}{\mathrm{a}^2}-\frac{(\mathrm{y}-\mathrm{k})^2}{\mathrm{~b}^2}=1\)
5 \(x^2+y^2=a^2+b^2\)
Ellipse

120635 The parametric representation of a point on the ellipse whose foci are \((3,0)\) and \((-1,0)\) and eccentricity \(2 / 3\), is

1 \((1+3 \cos \theta, \sqrt{3} \sin \theta)\)
2 \((1+3 \cos \theta, 5 \sin \theta)\)
3 \((1+3 \cos \theta, 1+\sqrt{5} \sin \theta)\)
4 \((1+3 \cos \theta, 1+5 \sin \theta)\)
5 \((1+3 \cos \theta, \sqrt{5} \sin \theta)\)
Ellipse

120631 Let \(S \equiv \frac{x^2}{a^2}+\frac{y^2}{b^2}-1=0, S^{\prime} \equiv \frac{x^2}{\alpha^2}+\frac{y^2}{\beta^2}-1=0\) be two intersecting ellipses. If \(P(\operatorname{acos} \theta, b \sin \theta)\) and \(Q\left(\operatorname{acos}\left(\frac{\pi}{2}+\theta\right), b \sin \left(\frac{\pi}{2}+\theta\right)\right)\) are their points of intersection then \(\frac{1}{2}\left(a^2 \beta^2+b^2 \alpha^2\right)=\)

1 \(a^2 b^2\)
2 \(\alpha^2+\beta^2\)
3 \(\mathrm{a}^2+\mathrm{b}^2\)
4 \(\alpha^2 \beta^2\)
Ellipse

120632 Let \(P\left(\frac{\pi}{4}\right), Q\left(\frac{5 \pi}{4}\right), R\left(\frac{3 \pi}{4}\right), T\left(\frac{7 \pi}{4}\right)\) be the points on the hyperbola \(x^2-4 y^2-4=0\) in the parametric form. Then the area of the quadrilateral PQRT is (in square units)

1 \(4 \sqrt{2}\)
2 \(16 \sqrt{2}\)
3 \(32 \sqrt{2}\)
4 \(8 \sqrt{2}\)
Ellipse

120633 The end points of the major axis of an ellipse are \((2,4)\) and \((2,-8)\). If the distance between foci of this ellipse is 4 , then the equation of the ellipse is

1 \(\frac{(x-2)^2}{32}+\frac{(y+2)^2}{36}=1\)
2 \(\frac{(x-4)^2}{32}+\frac{(y+2)^2}{36}=1\)
3 \(\frac{(x-2)^2}{36}+\frac{(y+2)^2}{32}=1\)
4 \(\frac{(x-2)^2}{36}+\frac{(y-4)^2}{32}=1\)
5 \(\frac{(x-2)^2}{36}+\frac{(y-4)^2}{32}=1\)
Ellipse

120634 If \(x=h+a \sec \theta\) and \(y=k+b \operatorname{cosec} \theta\). Then

1 \(\frac{\mathrm{a}^2}{(\mathrm{x}+\mathrm{h})^2}-\frac{\mathrm{b}^2}{(\mathrm{y}+\mathrm{k})^2}=1\)
2 \(\frac{\mathrm{a}^2}{(\mathrm{x}-\mathrm{h})^2}+\frac{\mathrm{b}^2}{(\mathrm{y}-\mathrm{k})^2}=1\)
3 \(\frac{(\mathrm{x}-\mathrm{h})^2}{\mathrm{a}^2}+\frac{(\mathrm{y}-\mathrm{k})^2}{\mathrm{~b}^2}=1\)
4 \(\frac{(\mathrm{x}-\mathrm{h})^2}{\mathrm{a}^2}-\frac{(\mathrm{y}-\mathrm{k})^2}{\mathrm{~b}^2}=1\)
5 \(x^2+y^2=a^2+b^2\)
Ellipse

120635 The parametric representation of a point on the ellipse whose foci are \((3,0)\) and \((-1,0)\) and eccentricity \(2 / 3\), is

1 \((1+3 \cos \theta, \sqrt{3} \sin \theta)\)
2 \((1+3 \cos \theta, 5 \sin \theta)\)
3 \((1+3 \cos \theta, 1+\sqrt{5} \sin \theta)\)
4 \((1+3 \cos \theta, 1+5 \sin \theta)\)
5 \((1+3 \cos \theta, \sqrt{5} \sin \theta)\)