Standard Equation of Ellipse
Ellipse

120560 The length of the latus rectum of the ellipse \(16 x^2+25 y^2=400\) is

1 \(5 / 16\) unit
2 \(32 / 5\) unit
3 \(16 / 5\) unit
4 \(5 / 32\) unit
Ellipse

120561 The eccentric angle in the first quadrant of a point on the ellipse \(\frac{x^2}{10}+\frac{y^2}{8}=1\) at a distance 3 units from the centre of the ellipse is

1 \(\frac{\pi}{6}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{\pi}{2}\)
Ellipse

120562 The line \(x=2 y\) intersects the ellipse \(\frac{x^2}{4}+y^2=1\) at the points \(P\) and \(Q\). The equation of the circle with \(P Q\) as diameter is

1 \(x^2+y^2=\frac{1}{2}\)
2 \(x^2+y^2=1\)
3 \(x^2+y^2=2\)
4 \(\mathrm{x}^2+\mathrm{y}^2=\frac{5}{2}\)
Ellipse

120563 Let the foci of the ellipse \(\frac{x^2}{9}+y^2=1\) subtend a right angle at a point \(P\). Then, the locus of \(P\) is

1 \(x^2+y^2=1\)
2 \(x^2+y^2=2\)
3 \(x^2+y^2=4\)
4 \(x^2+y^2=8\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Ellipse

120560 The length of the latus rectum of the ellipse \(16 x^2+25 y^2=400\) is

1 \(5 / 16\) unit
2 \(32 / 5\) unit
3 \(16 / 5\) unit
4 \(5 / 32\) unit
Ellipse

120561 The eccentric angle in the first quadrant of a point on the ellipse \(\frac{x^2}{10}+\frac{y^2}{8}=1\) at a distance 3 units from the centre of the ellipse is

1 \(\frac{\pi}{6}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{\pi}{2}\)
Ellipse

120562 The line \(x=2 y\) intersects the ellipse \(\frac{x^2}{4}+y^2=1\) at the points \(P\) and \(Q\). The equation of the circle with \(P Q\) as diameter is

1 \(x^2+y^2=\frac{1}{2}\)
2 \(x^2+y^2=1\)
3 \(x^2+y^2=2\)
4 \(\mathrm{x}^2+\mathrm{y}^2=\frac{5}{2}\)
Ellipse

120563 Let the foci of the ellipse \(\frac{x^2}{9}+y^2=1\) subtend a right angle at a point \(P\). Then, the locus of \(P\) is

1 \(x^2+y^2=1\)
2 \(x^2+y^2=2\)
3 \(x^2+y^2=4\)
4 \(x^2+y^2=8\)
Ellipse

120560 The length of the latus rectum of the ellipse \(16 x^2+25 y^2=400\) is

1 \(5 / 16\) unit
2 \(32 / 5\) unit
3 \(16 / 5\) unit
4 \(5 / 32\) unit
Ellipse

120561 The eccentric angle in the first quadrant of a point on the ellipse \(\frac{x^2}{10}+\frac{y^2}{8}=1\) at a distance 3 units from the centre of the ellipse is

1 \(\frac{\pi}{6}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{\pi}{2}\)
Ellipse

120562 The line \(x=2 y\) intersects the ellipse \(\frac{x^2}{4}+y^2=1\) at the points \(P\) and \(Q\). The equation of the circle with \(P Q\) as diameter is

1 \(x^2+y^2=\frac{1}{2}\)
2 \(x^2+y^2=1\)
3 \(x^2+y^2=2\)
4 \(\mathrm{x}^2+\mathrm{y}^2=\frac{5}{2}\)
Ellipse

120563 Let the foci of the ellipse \(\frac{x^2}{9}+y^2=1\) subtend a right angle at a point \(P\). Then, the locus of \(P\) is

1 \(x^2+y^2=1\)
2 \(x^2+y^2=2\)
3 \(x^2+y^2=4\)
4 \(x^2+y^2=8\)
Ellipse

120560 The length of the latus rectum of the ellipse \(16 x^2+25 y^2=400\) is

1 \(5 / 16\) unit
2 \(32 / 5\) unit
3 \(16 / 5\) unit
4 \(5 / 32\) unit
Ellipse

120561 The eccentric angle in the first quadrant of a point on the ellipse \(\frac{x^2}{10}+\frac{y^2}{8}=1\) at a distance 3 units from the centre of the ellipse is

1 \(\frac{\pi}{6}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{\pi}{2}\)
Ellipse

120562 The line \(x=2 y\) intersects the ellipse \(\frac{x^2}{4}+y^2=1\) at the points \(P\) and \(Q\). The equation of the circle with \(P Q\) as diameter is

1 \(x^2+y^2=\frac{1}{2}\)
2 \(x^2+y^2=1\)
3 \(x^2+y^2=2\)
4 \(\mathrm{x}^2+\mathrm{y}^2=\frac{5}{2}\)
Ellipse

120563 Let the foci of the ellipse \(\frac{x^2}{9}+y^2=1\) subtend a right angle at a point \(P\). Then, the locus of \(P\) is

1 \(x^2+y^2=1\)
2 \(x^2+y^2=2\)
3 \(x^2+y^2=4\)
4 \(x^2+y^2=8\)