Explanation:
D Given,
\(\frac{\mathrm{x}^2}{9}+\mathrm{y}^2=1\)
So, \(\mathrm{a}^2=9\) and \(\mathrm{b}^2=1\)
\(\therefore \quad \mathrm{e}=\sqrt{1-\frac{\mathrm{b}^2}{\mathrm{a}^2}}=\sqrt{1-\frac{1}{9}}=\frac{2 \sqrt{2}}{3}\)
So, foci are \(( \pm \mathrm{ae}, 0)=( \pm 2 \sqrt{2}, 0)\)
Let \((\mathrm{h}, \mathrm{k}\) ) be any point on ellipse,
\(\therefore\) According to question,
\(\frac{(\mathrm{k}-0)}{(\mathrm{h}-2 \sqrt{2})} \times \frac{(\mathrm{k}-0)}{(\mathrm{h}+2 \sqrt{2})}=-1\)
\(\mathrm{~h}^2-8=-\mathrm{k}^2\)
\(\mathrm{~h}^2+\mathrm{k}^2=8\)
\(\mathrm{x}^2+\mathrm{y}^2=8\)