Binomial Expansion
Binomial Theorem and its Simple Application

119368 The first three terms in the expansion of \((1+\) \(a x)^n(n \neq 0)\) are \(1,6 x\) and \(16 x^2\). Then the value of \(a\) and \(n\) are respectively

1 2 and 9
2 3 and 2
3 \(2 / 3\) and 9
4 \(3 / 2\) and 6
Binomial Theorem and its Simple Application

119369 By neglecting \(x^4\) and higher powers of \(x\) that approximate value of \(\sqrt[3]{x^2+64}-\sqrt[3]{x^2+27}\)

1 \(1-\frac{7}{234} x^2\)
2 \(1-\frac{7}{432} x^2\)
3 \(1-\frac{7}{32} \mathrm{x}^2\)
4 \(1-\frac{7}{42} \mathrm{x}^2\)
Binomial Theorem and its Simple Application

119370 If \(x\) follows a binomial distribution with parameters \(n=100\) and \(p=\frac{1}{3}\), then \(p(X=r)\) is maximum when \(r\) equals

1 16
2 32
3 33
4 None of these
Binomial Theorem and its Simple Application

119371 If \(\frac{e^x}{1-x}=B_0+B_1 x+B_2 x^2+\ldots .+B_n x^n+\ldots\). then the value of \(B_n-B_{n-1}\) is

1 1
2 \(\frac{1}{\mathrm{n}}\)
3 \(\frac{1}{\mathrm{n} !}\)
4 \(\frac{1}{n+1}\)
Binomial Theorem and its Simple Application

119368 The first three terms in the expansion of \((1+\) \(a x)^n(n \neq 0)\) are \(1,6 x\) and \(16 x^2\). Then the value of \(a\) and \(n\) are respectively

1 2 and 9
2 3 and 2
3 \(2 / 3\) and 9
4 \(3 / 2\) and 6
Binomial Theorem and its Simple Application

119369 By neglecting \(x^4\) and higher powers of \(x\) that approximate value of \(\sqrt[3]{x^2+64}-\sqrt[3]{x^2+27}\)

1 \(1-\frac{7}{234} x^2\)
2 \(1-\frac{7}{432} x^2\)
3 \(1-\frac{7}{32} \mathrm{x}^2\)
4 \(1-\frac{7}{42} \mathrm{x}^2\)
Binomial Theorem and its Simple Application

119370 If \(x\) follows a binomial distribution with parameters \(n=100\) and \(p=\frac{1}{3}\), then \(p(X=r)\) is maximum when \(r\) equals

1 16
2 32
3 33
4 None of these
Binomial Theorem and its Simple Application

119371 If \(\frac{e^x}{1-x}=B_0+B_1 x+B_2 x^2+\ldots .+B_n x^n+\ldots\). then the value of \(B_n-B_{n-1}\) is

1 1
2 \(\frac{1}{\mathrm{n}}\)
3 \(\frac{1}{\mathrm{n} !}\)
4 \(\frac{1}{n+1}\)
Binomial Theorem and its Simple Application

119368 The first three terms in the expansion of \((1+\) \(a x)^n(n \neq 0)\) are \(1,6 x\) and \(16 x^2\). Then the value of \(a\) and \(n\) are respectively

1 2 and 9
2 3 and 2
3 \(2 / 3\) and 9
4 \(3 / 2\) and 6
Binomial Theorem and its Simple Application

119369 By neglecting \(x^4\) and higher powers of \(x\) that approximate value of \(\sqrt[3]{x^2+64}-\sqrt[3]{x^2+27}\)

1 \(1-\frac{7}{234} x^2\)
2 \(1-\frac{7}{432} x^2\)
3 \(1-\frac{7}{32} \mathrm{x}^2\)
4 \(1-\frac{7}{42} \mathrm{x}^2\)
Binomial Theorem and its Simple Application

119370 If \(x\) follows a binomial distribution with parameters \(n=100\) and \(p=\frac{1}{3}\), then \(p(X=r)\) is maximum when \(r\) equals

1 16
2 32
3 33
4 None of these
Binomial Theorem and its Simple Application

119371 If \(\frac{e^x}{1-x}=B_0+B_1 x+B_2 x^2+\ldots .+B_n x^n+\ldots\). then the value of \(B_n-B_{n-1}\) is

1 1
2 \(\frac{1}{\mathrm{n}}\)
3 \(\frac{1}{\mathrm{n} !}\)
4 \(\frac{1}{n+1}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Binomial Theorem and its Simple Application

119368 The first three terms in the expansion of \((1+\) \(a x)^n(n \neq 0)\) are \(1,6 x\) and \(16 x^2\). Then the value of \(a\) and \(n\) are respectively

1 2 and 9
2 3 and 2
3 \(2 / 3\) and 9
4 \(3 / 2\) and 6
Binomial Theorem and its Simple Application

119369 By neglecting \(x^4\) and higher powers of \(x\) that approximate value of \(\sqrt[3]{x^2+64}-\sqrt[3]{x^2+27}\)

1 \(1-\frac{7}{234} x^2\)
2 \(1-\frac{7}{432} x^2\)
3 \(1-\frac{7}{32} \mathrm{x}^2\)
4 \(1-\frac{7}{42} \mathrm{x}^2\)
Binomial Theorem and its Simple Application

119370 If \(x\) follows a binomial distribution with parameters \(n=100\) and \(p=\frac{1}{3}\), then \(p(X=r)\) is maximum when \(r\) equals

1 16
2 32
3 33
4 None of these
Binomial Theorem and its Simple Application

119371 If \(\frac{e^x}{1-x}=B_0+B_1 x+B_2 x^2+\ldots .+B_n x^n+\ldots\). then the value of \(B_n-B_{n-1}\) is

1 1
2 \(\frac{1}{\mathrm{n}}\)
3 \(\frac{1}{\mathrm{n} !}\)
4 \(\frac{1}{n+1}\)