Binomial Expansion
Binomial Theorem and its Simple Application

119349 If \(\left(1+x+x^2\right)^n=a_0+a_1 x+a_2 x^2+\ldots . .+a_{2 n} x^{2 n}\), then \(\mathbf{a}_0+\mathbf{a}_3+\mathbf{a}_6+\ldots \ldots . .=\)

1 \(3^{\mathrm{n}+1}\)
2 \(3 \mathrm{n}\)
3 \(3^{\mathrm{n}-1}\)
4 None of these
Binomial Theorem and its Simple Application

119350 The value of \(\left(\frac{1+i}{1-i}\right)^{100}\) is equal to

1 1
2 -1
3 i
4 \(-\mathrm{i}\)
Binomial Theorem and its Simple Application

119351 The greatest value of the term independent of \(x\), as \(\alpha\) varies over \(R\), in the expansion of \(\left(x \cos \alpha+\frac{\sin \alpha}{x}\right)^{10}\) is

1 \({ }^{10} \mathrm{C}_5\)
2 \(\left(\frac{1}{2}\right)^5{ }^{10} \mathrm{C}_5\)
3 \(\left(\frac{1}{2}\right)^4{ }^{10} \mathrm{C}_5\)
4 \(\left(\frac{1}{2}\right)^3{ }^{10} \mathrm{C}_5\)
Binomial Theorem and its Simple Application

119352 Let \(n\) be a positive integer. If the coefficients of second, third and fourth terms in the expansion of \((1+x)^n\) are in A.P., then \(n=\)

1 2
2 6
3 7
4 None of these
Binomial Theorem and its Simple Application

119353 The total number of terms in the expansion of \((1+x)^{2 n}-(1-x)^{2 n}\) after simplification is

1 \(n+1\)
2 \(n-1\)
3 \(\mathrm{n}\)
4 \(4 \mathrm{n}\)
Binomial Theorem and its Simple Application

119349 If \(\left(1+x+x^2\right)^n=a_0+a_1 x+a_2 x^2+\ldots . .+a_{2 n} x^{2 n}\), then \(\mathbf{a}_0+\mathbf{a}_3+\mathbf{a}_6+\ldots \ldots . .=\)

1 \(3^{\mathrm{n}+1}\)
2 \(3 \mathrm{n}\)
3 \(3^{\mathrm{n}-1}\)
4 None of these
Binomial Theorem and its Simple Application

119350 The value of \(\left(\frac{1+i}{1-i}\right)^{100}\) is equal to

1 1
2 -1
3 i
4 \(-\mathrm{i}\)
Binomial Theorem and its Simple Application

119351 The greatest value of the term independent of \(x\), as \(\alpha\) varies over \(R\), in the expansion of \(\left(x \cos \alpha+\frac{\sin \alpha}{x}\right)^{10}\) is

1 \({ }^{10} \mathrm{C}_5\)
2 \(\left(\frac{1}{2}\right)^5{ }^{10} \mathrm{C}_5\)
3 \(\left(\frac{1}{2}\right)^4{ }^{10} \mathrm{C}_5\)
4 \(\left(\frac{1}{2}\right)^3{ }^{10} \mathrm{C}_5\)
Binomial Theorem and its Simple Application

119352 Let \(n\) be a positive integer. If the coefficients of second, third and fourth terms in the expansion of \((1+x)^n\) are in A.P., then \(n=\)

1 2
2 6
3 7
4 None of these
Binomial Theorem and its Simple Application

119353 The total number of terms in the expansion of \((1+x)^{2 n}-(1-x)^{2 n}\) after simplification is

1 \(n+1\)
2 \(n-1\)
3 \(\mathrm{n}\)
4 \(4 \mathrm{n}\)
Binomial Theorem and its Simple Application

119349 If \(\left(1+x+x^2\right)^n=a_0+a_1 x+a_2 x^2+\ldots . .+a_{2 n} x^{2 n}\), then \(\mathbf{a}_0+\mathbf{a}_3+\mathbf{a}_6+\ldots \ldots . .=\)

1 \(3^{\mathrm{n}+1}\)
2 \(3 \mathrm{n}\)
3 \(3^{\mathrm{n}-1}\)
4 None of these
Binomial Theorem and its Simple Application

119350 The value of \(\left(\frac{1+i}{1-i}\right)^{100}\) is equal to

1 1
2 -1
3 i
4 \(-\mathrm{i}\)
Binomial Theorem and its Simple Application

119351 The greatest value of the term independent of \(x\), as \(\alpha\) varies over \(R\), in the expansion of \(\left(x \cos \alpha+\frac{\sin \alpha}{x}\right)^{10}\) is

1 \({ }^{10} \mathrm{C}_5\)
2 \(\left(\frac{1}{2}\right)^5{ }^{10} \mathrm{C}_5\)
3 \(\left(\frac{1}{2}\right)^4{ }^{10} \mathrm{C}_5\)
4 \(\left(\frac{1}{2}\right)^3{ }^{10} \mathrm{C}_5\)
Binomial Theorem and its Simple Application

119352 Let \(n\) be a positive integer. If the coefficients of second, third and fourth terms in the expansion of \((1+x)^n\) are in A.P., then \(n=\)

1 2
2 6
3 7
4 None of these
Binomial Theorem and its Simple Application

119353 The total number of terms in the expansion of \((1+x)^{2 n}-(1-x)^{2 n}\) after simplification is

1 \(n+1\)
2 \(n-1\)
3 \(\mathrm{n}\)
4 \(4 \mathrm{n}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Binomial Theorem and its Simple Application

119349 If \(\left(1+x+x^2\right)^n=a_0+a_1 x+a_2 x^2+\ldots . .+a_{2 n} x^{2 n}\), then \(\mathbf{a}_0+\mathbf{a}_3+\mathbf{a}_6+\ldots \ldots . .=\)

1 \(3^{\mathrm{n}+1}\)
2 \(3 \mathrm{n}\)
3 \(3^{\mathrm{n}-1}\)
4 None of these
Binomial Theorem and its Simple Application

119350 The value of \(\left(\frac{1+i}{1-i}\right)^{100}\) is equal to

1 1
2 -1
3 i
4 \(-\mathrm{i}\)
Binomial Theorem and its Simple Application

119351 The greatest value of the term independent of \(x\), as \(\alpha\) varies over \(R\), in the expansion of \(\left(x \cos \alpha+\frac{\sin \alpha}{x}\right)^{10}\) is

1 \({ }^{10} \mathrm{C}_5\)
2 \(\left(\frac{1}{2}\right)^5{ }^{10} \mathrm{C}_5\)
3 \(\left(\frac{1}{2}\right)^4{ }^{10} \mathrm{C}_5\)
4 \(\left(\frac{1}{2}\right)^3{ }^{10} \mathrm{C}_5\)
Binomial Theorem and its Simple Application

119352 Let \(n\) be a positive integer. If the coefficients of second, third and fourth terms in the expansion of \((1+x)^n\) are in A.P., then \(n=\)

1 2
2 6
3 7
4 None of these
Binomial Theorem and its Simple Application

119353 The total number of terms in the expansion of \((1+x)^{2 n}-(1-x)^{2 n}\) after simplification is

1 \(n+1\)
2 \(n-1\)
3 \(\mathrm{n}\)
4 \(4 \mathrm{n}\)
Binomial Theorem and its Simple Application

119349 If \(\left(1+x+x^2\right)^n=a_0+a_1 x+a_2 x^2+\ldots . .+a_{2 n} x^{2 n}\), then \(\mathbf{a}_0+\mathbf{a}_3+\mathbf{a}_6+\ldots \ldots . .=\)

1 \(3^{\mathrm{n}+1}\)
2 \(3 \mathrm{n}\)
3 \(3^{\mathrm{n}-1}\)
4 None of these
Binomial Theorem and its Simple Application

119350 The value of \(\left(\frac{1+i}{1-i}\right)^{100}\) is equal to

1 1
2 -1
3 i
4 \(-\mathrm{i}\)
Binomial Theorem and its Simple Application

119351 The greatest value of the term independent of \(x\), as \(\alpha\) varies over \(R\), in the expansion of \(\left(x \cos \alpha+\frac{\sin \alpha}{x}\right)^{10}\) is

1 \({ }^{10} \mathrm{C}_5\)
2 \(\left(\frac{1}{2}\right)^5{ }^{10} \mathrm{C}_5\)
3 \(\left(\frac{1}{2}\right)^4{ }^{10} \mathrm{C}_5\)
4 \(\left(\frac{1}{2}\right)^3{ }^{10} \mathrm{C}_5\)
Binomial Theorem and its Simple Application

119352 Let \(n\) be a positive integer. If the coefficients of second, third and fourth terms in the expansion of \((1+x)^n\) are in A.P., then \(n=\)

1 2
2 6
3 7
4 None of these
Binomial Theorem and its Simple Application

119353 The total number of terms in the expansion of \((1+x)^{2 n}-(1-x)^{2 n}\) after simplification is

1 \(n+1\)
2 \(n-1\)
3 \(\mathrm{n}\)
4 \(4 \mathrm{n}\)