Binomial Expansion
Binomial Theorem and its Simple Application

119341 The ninth term in the expansion of
\(\left[3^{\log _3 \sqrt{25^{x-1}+7}}+3^{\left(\frac{-1}{8}\right) \log _3\left(5^{x-1}+1\right)}\right]^{10} \text { is equal to } 180 \text {, then }\)
\(x\) is equal to

1 1
2 2
3 3
4 None of these
Binomial Theorem and its Simple Application

119342 If the expansion in powers of \(x\) of the function \(\frac{1}{(1-a x)(1-b x)}\) is \(a_0+a_1 x+a_2 x^2+a_3 x^3+\ldots . .\), where \(|a x|,|b x|\lt 1\), then what is \(a_n\) equal to?

1 \(\frac{a^n-b^n}{b-a}\)
2 \(\frac{a^{\mathrm{n}+1}-\mathrm{b}^{\mathrm{n}+1}}{\mathrm{~b}-\mathrm{a}}\)
3 \(\frac{b^{n+1}-a^{n+1}}{b-a}\)
4 \(\frac{b^n-a^n}{b-a}\)
Binomial Theorem and its Simple Application

119343 \(\mathrm{C}_1+2 \mathrm{C}_2+3 \mathrm{C}_3+\ldots+\mathrm{nC}_{\mathrm{n}}\) is equal to

1 \(2^{\mathrm{n}}\)
2 \(\mathrm{n} \cdot 2^{\mathrm{n}}\)
3 \(\mathrm{n} \cdot 2^{\mathrm{n}-1}\)
4 \(\mathrm{n} \cdot 2^{\mathrm{n}+1}\)
Binomial Theorem and its Simple Application

119344 Coefficient of \(x^n\) in the expansion of \(1+\frac{\mathbf{a}+\mathbf{b x}}{1 !}+\frac{(\mathbf{a}+\mathbf{b x})^2}{2 !}+\frac{(\mathbf{a}+\mathbf{b x})^3}{3 !}+\ldots\) is

1 \(\frac{e^a \cdot b^n}{n !}\)
2 \(\frac{(\mathrm{b} \cdot \mathrm{a})^{\mathrm{n}}}{\mathrm{n}}\)
3 \(\frac{\mathrm{e}^{\mathrm{b}} \cdot \mathrm{b}^{\mathrm{n}}}{(\mathrm{n}-1) !}\)
4 \(\frac{\mathrm{a}^{\mathrm{n}} \cdot \mathrm{b}^{\mathrm{n}-1}}{\mathrm{n} !}\)
Binomial Theorem and its Simple Application

119341 The ninth term in the expansion of
\(\left[3^{\log _3 \sqrt{25^{x-1}+7}}+3^{\left(\frac{-1}{8}\right) \log _3\left(5^{x-1}+1\right)}\right]^{10} \text { is equal to } 180 \text {, then }\)
\(x\) is equal to

1 1
2 2
3 3
4 None of these
Binomial Theorem and its Simple Application

119342 If the expansion in powers of \(x\) of the function \(\frac{1}{(1-a x)(1-b x)}\) is \(a_0+a_1 x+a_2 x^2+a_3 x^3+\ldots . .\), where \(|a x|,|b x|\lt 1\), then what is \(a_n\) equal to?

1 \(\frac{a^n-b^n}{b-a}\)
2 \(\frac{a^{\mathrm{n}+1}-\mathrm{b}^{\mathrm{n}+1}}{\mathrm{~b}-\mathrm{a}}\)
3 \(\frac{b^{n+1}-a^{n+1}}{b-a}\)
4 \(\frac{b^n-a^n}{b-a}\)
Binomial Theorem and its Simple Application

119343 \(\mathrm{C}_1+2 \mathrm{C}_2+3 \mathrm{C}_3+\ldots+\mathrm{nC}_{\mathrm{n}}\) is equal to

1 \(2^{\mathrm{n}}\)
2 \(\mathrm{n} \cdot 2^{\mathrm{n}}\)
3 \(\mathrm{n} \cdot 2^{\mathrm{n}-1}\)
4 \(\mathrm{n} \cdot 2^{\mathrm{n}+1}\)
Binomial Theorem and its Simple Application

119344 Coefficient of \(x^n\) in the expansion of \(1+\frac{\mathbf{a}+\mathbf{b x}}{1 !}+\frac{(\mathbf{a}+\mathbf{b x})^2}{2 !}+\frac{(\mathbf{a}+\mathbf{b x})^3}{3 !}+\ldots\) is

1 \(\frac{e^a \cdot b^n}{n !}\)
2 \(\frac{(\mathrm{b} \cdot \mathrm{a})^{\mathrm{n}}}{\mathrm{n}}\)
3 \(\frac{\mathrm{e}^{\mathrm{b}} \cdot \mathrm{b}^{\mathrm{n}}}{(\mathrm{n}-1) !}\)
4 \(\frac{\mathrm{a}^{\mathrm{n}} \cdot \mathrm{b}^{\mathrm{n}-1}}{\mathrm{n} !}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Binomial Theorem and its Simple Application

119341 The ninth term in the expansion of
\(\left[3^{\log _3 \sqrt{25^{x-1}+7}}+3^{\left(\frac{-1}{8}\right) \log _3\left(5^{x-1}+1\right)}\right]^{10} \text { is equal to } 180 \text {, then }\)
\(x\) is equal to

1 1
2 2
3 3
4 None of these
Binomial Theorem and its Simple Application

119342 If the expansion in powers of \(x\) of the function \(\frac{1}{(1-a x)(1-b x)}\) is \(a_0+a_1 x+a_2 x^2+a_3 x^3+\ldots . .\), where \(|a x|,|b x|\lt 1\), then what is \(a_n\) equal to?

1 \(\frac{a^n-b^n}{b-a}\)
2 \(\frac{a^{\mathrm{n}+1}-\mathrm{b}^{\mathrm{n}+1}}{\mathrm{~b}-\mathrm{a}}\)
3 \(\frac{b^{n+1}-a^{n+1}}{b-a}\)
4 \(\frac{b^n-a^n}{b-a}\)
Binomial Theorem and its Simple Application

119343 \(\mathrm{C}_1+2 \mathrm{C}_2+3 \mathrm{C}_3+\ldots+\mathrm{nC}_{\mathrm{n}}\) is equal to

1 \(2^{\mathrm{n}}\)
2 \(\mathrm{n} \cdot 2^{\mathrm{n}}\)
3 \(\mathrm{n} \cdot 2^{\mathrm{n}-1}\)
4 \(\mathrm{n} \cdot 2^{\mathrm{n}+1}\)
Binomial Theorem and its Simple Application

119344 Coefficient of \(x^n\) in the expansion of \(1+\frac{\mathbf{a}+\mathbf{b x}}{1 !}+\frac{(\mathbf{a}+\mathbf{b x})^2}{2 !}+\frac{(\mathbf{a}+\mathbf{b x})^3}{3 !}+\ldots\) is

1 \(\frac{e^a \cdot b^n}{n !}\)
2 \(\frac{(\mathrm{b} \cdot \mathrm{a})^{\mathrm{n}}}{\mathrm{n}}\)
3 \(\frac{\mathrm{e}^{\mathrm{b}} \cdot \mathrm{b}^{\mathrm{n}}}{(\mathrm{n}-1) !}\)
4 \(\frac{\mathrm{a}^{\mathrm{n}} \cdot \mathrm{b}^{\mathrm{n}-1}}{\mathrm{n} !}\)
Binomial Theorem and its Simple Application

119341 The ninth term in the expansion of
\(\left[3^{\log _3 \sqrt{25^{x-1}+7}}+3^{\left(\frac{-1}{8}\right) \log _3\left(5^{x-1}+1\right)}\right]^{10} \text { is equal to } 180 \text {, then }\)
\(x\) is equal to

1 1
2 2
3 3
4 None of these
Binomial Theorem and its Simple Application

119342 If the expansion in powers of \(x\) of the function \(\frac{1}{(1-a x)(1-b x)}\) is \(a_0+a_1 x+a_2 x^2+a_3 x^3+\ldots . .\), where \(|a x|,|b x|\lt 1\), then what is \(a_n\) equal to?

1 \(\frac{a^n-b^n}{b-a}\)
2 \(\frac{a^{\mathrm{n}+1}-\mathrm{b}^{\mathrm{n}+1}}{\mathrm{~b}-\mathrm{a}}\)
3 \(\frac{b^{n+1}-a^{n+1}}{b-a}\)
4 \(\frac{b^n-a^n}{b-a}\)
Binomial Theorem and its Simple Application

119343 \(\mathrm{C}_1+2 \mathrm{C}_2+3 \mathrm{C}_3+\ldots+\mathrm{nC}_{\mathrm{n}}\) is equal to

1 \(2^{\mathrm{n}}\)
2 \(\mathrm{n} \cdot 2^{\mathrm{n}}\)
3 \(\mathrm{n} \cdot 2^{\mathrm{n}-1}\)
4 \(\mathrm{n} \cdot 2^{\mathrm{n}+1}\)
Binomial Theorem and its Simple Application

119344 Coefficient of \(x^n\) in the expansion of \(1+\frac{\mathbf{a}+\mathbf{b x}}{1 !}+\frac{(\mathbf{a}+\mathbf{b x})^2}{2 !}+\frac{(\mathbf{a}+\mathbf{b x})^3}{3 !}+\ldots\) is

1 \(\frac{e^a \cdot b^n}{n !}\)
2 \(\frac{(\mathrm{b} \cdot \mathrm{a})^{\mathrm{n}}}{\mathrm{n}}\)
3 \(\frac{\mathrm{e}^{\mathrm{b}} \cdot \mathrm{b}^{\mathrm{n}}}{(\mathrm{n}-1) !}\)
4 \(\frac{\mathrm{a}^{\mathrm{n}} \cdot \mathrm{b}^{\mathrm{n}-1}}{\mathrm{n} !}\)