121432 A variable plane \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\), which is at a unit distance from the origin cuts the coordinate axes at \(A, B\) and \(C\). If the centroid \((x, y, z)\) of \(\triangle A B C\) satisfies \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=k\) then ' \(k\) ' equals
121432 A variable plane \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\), which is at a unit distance from the origin cuts the coordinate axes at \(A, B\) and \(C\). If the centroid \((x, y, z)\) of \(\triangle A B C\) satisfies \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=k\) then ' \(k\) ' equals
121432 A variable plane \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\), which is at a unit distance from the origin cuts the coordinate axes at \(A, B\) and \(C\). If the centroid \((x, y, z)\) of \(\triangle A B C\) satisfies \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=k\) then ' \(k\) ' equals
121432 A variable plane \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\), which is at a unit distance from the origin cuts the coordinate axes at \(A, B\) and \(C\). If the centroid \((x, y, z)\) of \(\triangle A B C\) satisfies \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=k\) then ' \(k\) ' equals