Miscellaneous 3-D Problems
Three Dimensional Geometry

121444 Distance between two parallel planes \(2 x+y+\) \(2 z=8\) and \(4 x+2 y+4 z+5=0\) is

1 \(\frac{5}{2}\)
2 \(\frac{7}{2}\)
3 \(\frac{9}{2}\)
4 \(\frac{3}{2}\)
Three Dimensional Geometry

121410 From a point \(P(a, b, c)\) perpendicular \(P A, P B\) and drawn to \(y z\) and \(\mathrm{zx}\) planes. Find the equation of the plane \(O A B\), where \(O\) is the origin.

1 \(b c x+c a y+a b z=0\)
2 \(b c x+c a y-a b z=0\)
3 \(b c x-c a y+a b z=0\)
4 \(-\mathrm{bcx}+\mathrm{cay}+\mathrm{abz}=0\)
Three Dimensional Geometry

121404 Equation of line passing through the point \((2,3,1)\) and parallel to the line of intersection of the plane \(x-2 y-z+5=0\) and \(x+y+3 z=6\) is

1 \(\frac{x-2}{-5}=\frac{y-3}{-4}=\frac{z-1}{3}\)
2 \(\frac{x-2}{4}=\frac{y-3}{3}=\frac{z-1}{2}\)
3 \(\frac{x-2}{5}=\frac{y-3}{-4}=\frac{z-1}{3}\)
4 \(\frac{x-2}{5}=\frac{y-3}{4}=\frac{z-1}{3}\)
Three Dimensional Geometry

121419 The foot of the perpendicular from the point (7, \(14,5)\) to the plane \(2 x+4 y-z=2\) are

1 \((1,2,8)\)
2 \((3,2,8)\)
3 \((5,10,6)\)
4 \((9,18,4)\)
Three Dimensional Geometry

121421 The equation of the plane in normal form passing through the point \(A(\overline{\mathbf{a}})\), parallel to a vector \(\overline{\mathbf{b}}\) and containing \(\overline{\mathbf{a}}\) vector \(\overline{\mathbf{c}}\) is

1 r. \(\frac{\mathrm{c} \times \mathrm{a}}{ \vert\mathrm{c} \times \mathrm{a} \vert}=\left \vert\frac{\mathrm{a} \times \mathrm{b}}{\mathrm{a} \times 6}\right \vert\)
2 r. \(\frac{\mathrm{a} \times \mathrm{b}}{ \vert\mathrm{a} \times \mathrm{b} \vert}=\frac{[\mathrm{abc}]}{ \vert\mathrm{b} \times \mathrm{c} \vert}\)
3 r. \(\frac{\mathrm{b} \times \mathrm{c}}{ \vert\mathrm{b} \times \mathrm{c} \vert}=\frac{[\mathrm{abc}]}{ \vert\mathrm{b} \times \mathrm{c} \vert}\)
4 r.[abc]a \(=\frac{ \vert\mathrm{b} \times \mathrm{c} \vert}{ \vert\mathrm{a} \times \mathrm{c} \vert}\)
Three Dimensional Geometry

121444 Distance between two parallel planes \(2 x+y+\) \(2 z=8\) and \(4 x+2 y+4 z+5=0\) is

1 \(\frac{5}{2}\)
2 \(\frac{7}{2}\)
3 \(\frac{9}{2}\)
4 \(\frac{3}{2}\)
Three Dimensional Geometry

121410 From a point \(P(a, b, c)\) perpendicular \(P A, P B\) and drawn to \(y z\) and \(\mathrm{zx}\) planes. Find the equation of the plane \(O A B\), where \(O\) is the origin.

1 \(b c x+c a y+a b z=0\)
2 \(b c x+c a y-a b z=0\)
3 \(b c x-c a y+a b z=0\)
4 \(-\mathrm{bcx}+\mathrm{cay}+\mathrm{abz}=0\)
Three Dimensional Geometry

121404 Equation of line passing through the point \((2,3,1)\) and parallel to the line of intersection of the plane \(x-2 y-z+5=0\) and \(x+y+3 z=6\) is

1 \(\frac{x-2}{-5}=\frac{y-3}{-4}=\frac{z-1}{3}\)
2 \(\frac{x-2}{4}=\frac{y-3}{3}=\frac{z-1}{2}\)
3 \(\frac{x-2}{5}=\frac{y-3}{-4}=\frac{z-1}{3}\)
4 \(\frac{x-2}{5}=\frac{y-3}{4}=\frac{z-1}{3}\)
Three Dimensional Geometry

121419 The foot of the perpendicular from the point (7, \(14,5)\) to the plane \(2 x+4 y-z=2\) are

1 \((1,2,8)\)
2 \((3,2,8)\)
3 \((5,10,6)\)
4 \((9,18,4)\)
Three Dimensional Geometry

121421 The equation of the plane in normal form passing through the point \(A(\overline{\mathbf{a}})\), parallel to a vector \(\overline{\mathbf{b}}\) and containing \(\overline{\mathbf{a}}\) vector \(\overline{\mathbf{c}}\) is

1 r. \(\frac{\mathrm{c} \times \mathrm{a}}{ \vert\mathrm{c} \times \mathrm{a} \vert}=\left \vert\frac{\mathrm{a} \times \mathrm{b}}{\mathrm{a} \times 6}\right \vert\)
2 r. \(\frac{\mathrm{a} \times \mathrm{b}}{ \vert\mathrm{a} \times \mathrm{b} \vert}=\frac{[\mathrm{abc}]}{ \vert\mathrm{b} \times \mathrm{c} \vert}\)
3 r. \(\frac{\mathrm{b} \times \mathrm{c}}{ \vert\mathrm{b} \times \mathrm{c} \vert}=\frac{[\mathrm{abc}]}{ \vert\mathrm{b} \times \mathrm{c} \vert}\)
4 r.[abc]a \(=\frac{ \vert\mathrm{b} \times \mathrm{c} \vert}{ \vert\mathrm{a} \times \mathrm{c} \vert}\)
Three Dimensional Geometry

121444 Distance between two parallel planes \(2 x+y+\) \(2 z=8\) and \(4 x+2 y+4 z+5=0\) is

1 \(\frac{5}{2}\)
2 \(\frac{7}{2}\)
3 \(\frac{9}{2}\)
4 \(\frac{3}{2}\)
Three Dimensional Geometry

121410 From a point \(P(a, b, c)\) perpendicular \(P A, P B\) and drawn to \(y z\) and \(\mathrm{zx}\) planes. Find the equation of the plane \(O A B\), where \(O\) is the origin.

1 \(b c x+c a y+a b z=0\)
2 \(b c x+c a y-a b z=0\)
3 \(b c x-c a y+a b z=0\)
4 \(-\mathrm{bcx}+\mathrm{cay}+\mathrm{abz}=0\)
Three Dimensional Geometry

121404 Equation of line passing through the point \((2,3,1)\) and parallel to the line of intersection of the plane \(x-2 y-z+5=0\) and \(x+y+3 z=6\) is

1 \(\frac{x-2}{-5}=\frac{y-3}{-4}=\frac{z-1}{3}\)
2 \(\frac{x-2}{4}=\frac{y-3}{3}=\frac{z-1}{2}\)
3 \(\frac{x-2}{5}=\frac{y-3}{-4}=\frac{z-1}{3}\)
4 \(\frac{x-2}{5}=\frac{y-3}{4}=\frac{z-1}{3}\)
Three Dimensional Geometry

121419 The foot of the perpendicular from the point (7, \(14,5)\) to the plane \(2 x+4 y-z=2\) are

1 \((1,2,8)\)
2 \((3,2,8)\)
3 \((5,10,6)\)
4 \((9,18,4)\)
Three Dimensional Geometry

121421 The equation of the plane in normal form passing through the point \(A(\overline{\mathbf{a}})\), parallel to a vector \(\overline{\mathbf{b}}\) and containing \(\overline{\mathbf{a}}\) vector \(\overline{\mathbf{c}}\) is

1 r. \(\frac{\mathrm{c} \times \mathrm{a}}{ \vert\mathrm{c} \times \mathrm{a} \vert}=\left \vert\frac{\mathrm{a} \times \mathrm{b}}{\mathrm{a} \times 6}\right \vert\)
2 r. \(\frac{\mathrm{a} \times \mathrm{b}}{ \vert\mathrm{a} \times \mathrm{b} \vert}=\frac{[\mathrm{abc}]}{ \vert\mathrm{b} \times \mathrm{c} \vert}\)
3 r. \(\frac{\mathrm{b} \times \mathrm{c}}{ \vert\mathrm{b} \times \mathrm{c} \vert}=\frac{[\mathrm{abc}]}{ \vert\mathrm{b} \times \mathrm{c} \vert}\)
4 r.[abc]a \(=\frac{ \vert\mathrm{b} \times \mathrm{c} \vert}{ \vert\mathrm{a} \times \mathrm{c} \vert}\)
Three Dimensional Geometry

121444 Distance between two parallel planes \(2 x+y+\) \(2 z=8\) and \(4 x+2 y+4 z+5=0\) is

1 \(\frac{5}{2}\)
2 \(\frac{7}{2}\)
3 \(\frac{9}{2}\)
4 \(\frac{3}{2}\)
Three Dimensional Geometry

121410 From a point \(P(a, b, c)\) perpendicular \(P A, P B\) and drawn to \(y z\) and \(\mathrm{zx}\) planes. Find the equation of the plane \(O A B\), where \(O\) is the origin.

1 \(b c x+c a y+a b z=0\)
2 \(b c x+c a y-a b z=0\)
3 \(b c x-c a y+a b z=0\)
4 \(-\mathrm{bcx}+\mathrm{cay}+\mathrm{abz}=0\)
Three Dimensional Geometry

121404 Equation of line passing through the point \((2,3,1)\) and parallel to the line of intersection of the plane \(x-2 y-z+5=0\) and \(x+y+3 z=6\) is

1 \(\frac{x-2}{-5}=\frac{y-3}{-4}=\frac{z-1}{3}\)
2 \(\frac{x-2}{4}=\frac{y-3}{3}=\frac{z-1}{2}\)
3 \(\frac{x-2}{5}=\frac{y-3}{-4}=\frac{z-1}{3}\)
4 \(\frac{x-2}{5}=\frac{y-3}{4}=\frac{z-1}{3}\)
Three Dimensional Geometry

121419 The foot of the perpendicular from the point (7, \(14,5)\) to the plane \(2 x+4 y-z=2\) are

1 \((1,2,8)\)
2 \((3,2,8)\)
3 \((5,10,6)\)
4 \((9,18,4)\)
Three Dimensional Geometry

121421 The equation of the plane in normal form passing through the point \(A(\overline{\mathbf{a}})\), parallel to a vector \(\overline{\mathbf{b}}\) and containing \(\overline{\mathbf{a}}\) vector \(\overline{\mathbf{c}}\) is

1 r. \(\frac{\mathrm{c} \times \mathrm{a}}{ \vert\mathrm{c} \times \mathrm{a} \vert}=\left \vert\frac{\mathrm{a} \times \mathrm{b}}{\mathrm{a} \times 6}\right \vert\)
2 r. \(\frac{\mathrm{a} \times \mathrm{b}}{ \vert\mathrm{a} \times \mathrm{b} \vert}=\frac{[\mathrm{abc}]}{ \vert\mathrm{b} \times \mathrm{c} \vert}\)
3 r. \(\frac{\mathrm{b} \times \mathrm{c}}{ \vert\mathrm{b} \times \mathrm{c} \vert}=\frac{[\mathrm{abc}]}{ \vert\mathrm{b} \times \mathrm{c} \vert}\)
4 r.[abc]a \(=\frac{ \vert\mathrm{b} \times \mathrm{c} \vert}{ \vert\mathrm{a} \times \mathrm{c} \vert}\)
Three Dimensional Geometry

121444 Distance between two parallel planes \(2 x+y+\) \(2 z=8\) and \(4 x+2 y+4 z+5=0\) is

1 \(\frac{5}{2}\)
2 \(\frac{7}{2}\)
3 \(\frac{9}{2}\)
4 \(\frac{3}{2}\)
Three Dimensional Geometry

121410 From a point \(P(a, b, c)\) perpendicular \(P A, P B\) and drawn to \(y z\) and \(\mathrm{zx}\) planes. Find the equation of the plane \(O A B\), where \(O\) is the origin.

1 \(b c x+c a y+a b z=0\)
2 \(b c x+c a y-a b z=0\)
3 \(b c x-c a y+a b z=0\)
4 \(-\mathrm{bcx}+\mathrm{cay}+\mathrm{abz}=0\)
Three Dimensional Geometry

121404 Equation of line passing through the point \((2,3,1)\) and parallel to the line of intersection of the plane \(x-2 y-z+5=0\) and \(x+y+3 z=6\) is

1 \(\frac{x-2}{-5}=\frac{y-3}{-4}=\frac{z-1}{3}\)
2 \(\frac{x-2}{4}=\frac{y-3}{3}=\frac{z-1}{2}\)
3 \(\frac{x-2}{5}=\frac{y-3}{-4}=\frac{z-1}{3}\)
4 \(\frac{x-2}{5}=\frac{y-3}{4}=\frac{z-1}{3}\)
Three Dimensional Geometry

121419 The foot of the perpendicular from the point (7, \(14,5)\) to the plane \(2 x+4 y-z=2\) are

1 \((1,2,8)\)
2 \((3,2,8)\)
3 \((5,10,6)\)
4 \((9,18,4)\)
Three Dimensional Geometry

121421 The equation of the plane in normal form passing through the point \(A(\overline{\mathbf{a}})\), parallel to a vector \(\overline{\mathbf{b}}\) and containing \(\overline{\mathbf{a}}\) vector \(\overline{\mathbf{c}}\) is

1 r. \(\frac{\mathrm{c} \times \mathrm{a}}{ \vert\mathrm{c} \times \mathrm{a} \vert}=\left \vert\frac{\mathrm{a} \times \mathrm{b}}{\mathrm{a} \times 6}\right \vert\)
2 r. \(\frac{\mathrm{a} \times \mathrm{b}}{ \vert\mathrm{a} \times \mathrm{b} \vert}=\frac{[\mathrm{abc}]}{ \vert\mathrm{b} \times \mathrm{c} \vert}\)
3 r. \(\frac{\mathrm{b} \times \mathrm{c}}{ \vert\mathrm{b} \times \mathrm{c} \vert}=\frac{[\mathrm{abc}]}{ \vert\mathrm{b} \times \mathrm{c} \vert}\)
4 r.[abc]a \(=\frac{ \vert\mathrm{b} \times \mathrm{c} \vert}{ \vert\mathrm{a} \times \mathrm{c} \vert}\)