Distance and Image of a Point from a Plane
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Three Dimensional Geometry

121395 The image (reflection) of the point \((1,2,-1)\) in the plane \(\overrightarrow{\mathbf{r}} \cdot(\mathbf{3} \hat{\mathbf{i}}-\mathbf{5} \hat{\mathbf{j}}+\mathbf{4} \hat{\mathbf{k}})=5\) is

1 \(\left(\frac{73}{25}, \frac{-6}{5}, \frac{39}{25}\right)\)
2 \(\left(\frac{73}{25}, \frac{6}{5}, \frac{39}{25}\right)\)
3 \((-1,-2,1)\)
4 None of the above
Three Dimensional Geometry

121397 The distance of the point \((-1,9,-16)\) from the plane \(2 x+3 y-z=5\) measured parallel to the line \(\frac{x+4}{3}=\frac{2-y}{4}=\frac{z-3}{12}\) is

1 \(20 \sqrt{2}\)
2 \(13 \sqrt{2}\)
3 31
4 26
Three Dimensional Geometry

121398 The distance of the point \((7,-3,-4)\) from plane passing through the points \((2,-3,1),(-1,1,-2)\) and \((3,-4,2)\) is:

1 4
2 5
3 \(5 \sqrt{2}\)
4 \(4 \sqrt{2}\)
Three Dimensional Geometry

121399 The image of the point \(P(1,3,4)\) in the plane \(2 x\) \(-\mathbf{y}+\mathrm{z}+\mathbf{3}=0\), is

1 \((3,5,-2)\)
2 \((-3,5,2)\)
3 \((3,-5,2)\)
4 \((3,5,2)\)
Three Dimensional Geometry

121395 The image (reflection) of the point \((1,2,-1)\) in the plane \(\overrightarrow{\mathbf{r}} \cdot(\mathbf{3} \hat{\mathbf{i}}-\mathbf{5} \hat{\mathbf{j}}+\mathbf{4} \hat{\mathbf{k}})=5\) is

1 \(\left(\frac{73}{25}, \frac{-6}{5}, \frac{39}{25}\right)\)
2 \(\left(\frac{73}{25}, \frac{6}{5}, \frac{39}{25}\right)\)
3 \((-1,-2,1)\)
4 None of the above
Three Dimensional Geometry

121397 The distance of the point \((-1,9,-16)\) from the plane \(2 x+3 y-z=5\) measured parallel to the line \(\frac{x+4}{3}=\frac{2-y}{4}=\frac{z-3}{12}\) is

1 \(20 \sqrt{2}\)
2 \(13 \sqrt{2}\)
3 31
4 26
Three Dimensional Geometry

121398 The distance of the point \((7,-3,-4)\) from plane passing through the points \((2,-3,1),(-1,1,-2)\) and \((3,-4,2)\) is:

1 4
2 5
3 \(5 \sqrt{2}\)
4 \(4 \sqrt{2}\)
Three Dimensional Geometry

121399 The image of the point \(P(1,3,4)\) in the plane \(2 x\) \(-\mathbf{y}+\mathrm{z}+\mathbf{3}=0\), is

1 \((3,5,-2)\)
2 \((-3,5,2)\)
3 \((3,-5,2)\)
4 \((3,5,2)\)
Three Dimensional Geometry

121395 The image (reflection) of the point \((1,2,-1)\) in the plane \(\overrightarrow{\mathbf{r}} \cdot(\mathbf{3} \hat{\mathbf{i}}-\mathbf{5} \hat{\mathbf{j}}+\mathbf{4} \hat{\mathbf{k}})=5\) is

1 \(\left(\frac{73}{25}, \frac{-6}{5}, \frac{39}{25}\right)\)
2 \(\left(\frac{73}{25}, \frac{6}{5}, \frac{39}{25}\right)\)
3 \((-1,-2,1)\)
4 None of the above
Three Dimensional Geometry

121397 The distance of the point \((-1,9,-16)\) from the plane \(2 x+3 y-z=5\) measured parallel to the line \(\frac{x+4}{3}=\frac{2-y}{4}=\frac{z-3}{12}\) is

1 \(20 \sqrt{2}\)
2 \(13 \sqrt{2}\)
3 31
4 26
Three Dimensional Geometry

121398 The distance of the point \((7,-3,-4)\) from plane passing through the points \((2,-3,1),(-1,1,-2)\) and \((3,-4,2)\) is:

1 4
2 5
3 \(5 \sqrt{2}\)
4 \(4 \sqrt{2}\)
Three Dimensional Geometry

121399 The image of the point \(P(1,3,4)\) in the plane \(2 x\) \(-\mathbf{y}+\mathrm{z}+\mathbf{3}=0\), is

1 \((3,5,-2)\)
2 \((-3,5,2)\)
3 \((3,-5,2)\)
4 \((3,5,2)\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Three Dimensional Geometry

121395 The image (reflection) of the point \((1,2,-1)\) in the plane \(\overrightarrow{\mathbf{r}} \cdot(\mathbf{3} \hat{\mathbf{i}}-\mathbf{5} \hat{\mathbf{j}}+\mathbf{4} \hat{\mathbf{k}})=5\) is

1 \(\left(\frac{73}{25}, \frac{-6}{5}, \frac{39}{25}\right)\)
2 \(\left(\frac{73}{25}, \frac{6}{5}, \frac{39}{25}\right)\)
3 \((-1,-2,1)\)
4 None of the above
Three Dimensional Geometry

121397 The distance of the point \((-1,9,-16)\) from the plane \(2 x+3 y-z=5\) measured parallel to the line \(\frac{x+4}{3}=\frac{2-y}{4}=\frac{z-3}{12}\) is

1 \(20 \sqrt{2}\)
2 \(13 \sqrt{2}\)
3 31
4 26
Three Dimensional Geometry

121398 The distance of the point \((7,-3,-4)\) from plane passing through the points \((2,-3,1),(-1,1,-2)\) and \((3,-4,2)\) is:

1 4
2 5
3 \(5 \sqrt{2}\)
4 \(4 \sqrt{2}\)
Three Dimensional Geometry

121399 The image of the point \(P(1,3,4)\) in the plane \(2 x\) \(-\mathbf{y}+\mathrm{z}+\mathbf{3}=0\), is

1 \((3,5,-2)\)
2 \((-3,5,2)\)
3 \((3,-5,2)\)
4 \((3,5,2)\)