Distance and Image of a Point from a Plane
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Three Dimensional Geometry

121350 Find the angle
between the
line \(\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}\) \(10 x+2 y-11 z=3\) and the plane \(10 x+2 y-11 z=3\).

1 \(\sin ^{-1}\left(\frac{8}{21}\right)\)
2 \(\sin ^{-1}\left(\frac{5}{21}\right)\)
3 \(\sin ^{-1}\left(\frac{7}{21}\right)\)
4 \(\sin ^{-1}\left(\frac{1}{21}\right)\)
Three Dimensional Geometry

121352 The distance of the point \((2,-1,0)\) from the plane \(2 x+y+2 z+8=0\) is

1 \(\frac{11}{3}\) units
2 \(\frac{13}{3}\) units
3 \(\frac{17}{3}\) units
4 \(\frac{7}{3}\) units
Three Dimensional Geometry

121353 The distance of the point \((7,5,2)\) from the plane \(3 x+4 y+z-8=0\) measured parallel to the line \(\frac{x-1}{3}=\frac{y-2}{6}=\frac{z+1}{2}\) is

1 \(\sqrt{47}\) units
2 6 units
3 \(\sqrt{74}\) units
4 7 units
Three Dimensional Geometry

121354 If the points \((1,1, \lambda)\) and \((-3,0,1)\) are equidistant from the plane \(3 x+4 y-12 z+13=0\), then integer value of \(\lambda\) is

1 1
2 2
3 3
4 4
Three Dimensional Geometry

121350 Find the angle
between the
line \(\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}\) \(10 x+2 y-11 z=3\) and the plane \(10 x+2 y-11 z=3\).

1 \(\sin ^{-1}\left(\frac{8}{21}\right)\)
2 \(\sin ^{-1}\left(\frac{5}{21}\right)\)
3 \(\sin ^{-1}\left(\frac{7}{21}\right)\)
4 \(\sin ^{-1}\left(\frac{1}{21}\right)\)
Three Dimensional Geometry

121352 The distance of the point \((2,-1,0)\) from the plane \(2 x+y+2 z+8=0\) is

1 \(\frac{11}{3}\) units
2 \(\frac{13}{3}\) units
3 \(\frac{17}{3}\) units
4 \(\frac{7}{3}\) units
Three Dimensional Geometry

121353 The distance of the point \((7,5,2)\) from the plane \(3 x+4 y+z-8=0\) measured parallel to the line \(\frac{x-1}{3}=\frac{y-2}{6}=\frac{z+1}{2}\) is

1 \(\sqrt{47}\) units
2 6 units
3 \(\sqrt{74}\) units
4 7 units
Three Dimensional Geometry

121354 If the points \((1,1, \lambda)\) and \((-3,0,1)\) are equidistant from the plane \(3 x+4 y-12 z+13=0\), then integer value of \(\lambda\) is

1 1
2 2
3 3
4 4
Three Dimensional Geometry

121350 Find the angle
between the
line \(\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}\) \(10 x+2 y-11 z=3\) and the plane \(10 x+2 y-11 z=3\).

1 \(\sin ^{-1}\left(\frac{8}{21}\right)\)
2 \(\sin ^{-1}\left(\frac{5}{21}\right)\)
3 \(\sin ^{-1}\left(\frac{7}{21}\right)\)
4 \(\sin ^{-1}\left(\frac{1}{21}\right)\)
Three Dimensional Geometry

121352 The distance of the point \((2,-1,0)\) from the plane \(2 x+y+2 z+8=0\) is

1 \(\frac{11}{3}\) units
2 \(\frac{13}{3}\) units
3 \(\frac{17}{3}\) units
4 \(\frac{7}{3}\) units
Three Dimensional Geometry

121353 The distance of the point \((7,5,2)\) from the plane \(3 x+4 y+z-8=0\) measured parallel to the line \(\frac{x-1}{3}=\frac{y-2}{6}=\frac{z+1}{2}\) is

1 \(\sqrt{47}\) units
2 6 units
3 \(\sqrt{74}\) units
4 7 units
Three Dimensional Geometry

121354 If the points \((1,1, \lambda)\) and \((-3,0,1)\) are equidistant from the plane \(3 x+4 y-12 z+13=0\), then integer value of \(\lambda\) is

1 1
2 2
3 3
4 4
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Three Dimensional Geometry

121350 Find the angle
between the
line \(\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}\) \(10 x+2 y-11 z=3\) and the plane \(10 x+2 y-11 z=3\).

1 \(\sin ^{-1}\left(\frac{8}{21}\right)\)
2 \(\sin ^{-1}\left(\frac{5}{21}\right)\)
3 \(\sin ^{-1}\left(\frac{7}{21}\right)\)
4 \(\sin ^{-1}\left(\frac{1}{21}\right)\)
Three Dimensional Geometry

121352 The distance of the point \((2,-1,0)\) from the plane \(2 x+y+2 z+8=0\) is

1 \(\frac{11}{3}\) units
2 \(\frac{13}{3}\) units
3 \(\frac{17}{3}\) units
4 \(\frac{7}{3}\) units
Three Dimensional Geometry

121353 The distance of the point \((7,5,2)\) from the plane \(3 x+4 y+z-8=0\) measured parallel to the line \(\frac{x-1}{3}=\frac{y-2}{6}=\frac{z+1}{2}\) is

1 \(\sqrt{47}\) units
2 6 units
3 \(\sqrt{74}\) units
4 7 units
Three Dimensional Geometry

121354 If the points \((1,1, \lambda)\) and \((-3,0,1)\) are equidistant from the plane \(3 x+4 y-12 z+13=0\), then integer value of \(\lambda\) is

1 1
2 2
3 3
4 4