Explanation:
A

Let equation of line, \(\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}=k\)
\(\mathrm{x}=\mathrm{k}, \mathrm{y}=2 \mathrm{k}+1, \mathrm{z}=3 \mathrm{k}+2\)
\(\therefore\) Direction ratio of
\(\mathrm{PQ}=(\mathrm{k}-1,2 \mathrm{k}-5,3 \mathrm{k}-1)\)
\(\because \mathrm{PQ}\) is perpendicular to \(\mathrm{AB}\)
\(1(\mathrm{k}-1)+2(2 \mathrm{k}-5)+3(3 \mathrm{k}-1)=0\)
\(\mathrm{k}=1\)
\(\therefore\) Coordinates of \(\mathrm{Q}\) is \((1,3,5)\)
Also, \(\mathrm{Q}\) is mid- point of \(\mathrm{PR}\).
\(\frac{a+1}{2}=1, \frac{b+6}{2}=3, \frac{c+3}{2}=5\)
\(a=2-1, b=6-6, c=10-3\)
\(a=1, b=0, c=7\)\(\therefore\) Therefore image of \((1,6,3)\) is \((1,0,7)\).