Equation of a Line, Sphere, and a Plane in Different Forms
Three Dimensional Geometry

121306 For non-coplanar vectors \(a, b\) and \(c\), if the point of intersection of the line \(r=a+t(b-c)\) and the plane \(\mathbf{r}=\mathbf{b}+\mathbf{c}+\mathbf{x}(\mathbf{a}-\mathbf{b})+\mathbf{y}(\mathbf{c}+\mathbf{a})\) is \(l a+m b+n c\), then \(3 l+4 m+2 n=\)

1 0
2 \(\frac{1}{2}\)
3 2
4 1
Three Dimensional Geometry

121290 The equation of the plane through the points \((2,2,1)\) and \((9,3,6)\) and perpendicular to the plane \(2 x+6 y+6 z-1=0\) is

1 \(3 x+4 y+5 z+9=0\)
2 \(3 \mathrm{x}+4 \mathrm{y}-5 \mathrm{z}+9=0\)
3 \(3 x-4 y+5 z-9=0\)
4 \(3 x+4 y-5 z-9=0\)
Three Dimensional Geometry

121298 The equation of the plane mid-parallel to the planes \(2 x-3 y+6 z+21=0\) and \(2 x-3 y+6 z-14=0\) is given by .......

1 \(4 x+6 y-12 z+7=0\)
2 \(4 x-6 y-12 z-7=0\)
3 \(4 x-6 y+12 z+7=0\)
4 \(4 x+6 y+12 z-7=0\)
Three Dimensional Geometry

121300 The equation of the plane in normal form which passes through the points \((-2,1,3),(1,1\), \(1)\) and \((2,3,4)\) is

1 \(\left(\frac{2}{3}\right) \mathrm{x}+\left(-\frac{2}{3}\right) \mathrm{y}+\left(\frac{1}{3}\right) \mathrm{z}=\frac{1}{3}\)
2 \(\left(-\frac{2}{3}\right) \mathrm{x}+\left(\frac{2}{3}\right) \mathrm{y}+\left(-\frac{1}{3}\right) \mathrm{z}=\frac{1}{3}\)
3 \(\left(\frac{-4}{\sqrt{173}}\right) x+\left(\frac{11}{\sqrt{173}}\right) y+\left(\frac{-6}{\sqrt{173}}\right) z=\frac{1}{\sqrt{173}}\)
4 \(\left(\frac{4}{\sqrt{173}}\right) \mathrm{x}+\left(\frac{-11}{\sqrt{173}}\right) \mathrm{y}+\left(\frac{6}{\sqrt{173}}\right) \mathrm{z}=\frac{1}{\sqrt{173}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Three Dimensional Geometry

121306 For non-coplanar vectors \(a, b\) and \(c\), if the point of intersection of the line \(r=a+t(b-c)\) and the plane \(\mathbf{r}=\mathbf{b}+\mathbf{c}+\mathbf{x}(\mathbf{a}-\mathbf{b})+\mathbf{y}(\mathbf{c}+\mathbf{a})\) is \(l a+m b+n c\), then \(3 l+4 m+2 n=\)

1 0
2 \(\frac{1}{2}\)
3 2
4 1
Three Dimensional Geometry

121290 The equation of the plane through the points \((2,2,1)\) and \((9,3,6)\) and perpendicular to the plane \(2 x+6 y+6 z-1=0\) is

1 \(3 x+4 y+5 z+9=0\)
2 \(3 \mathrm{x}+4 \mathrm{y}-5 \mathrm{z}+9=0\)
3 \(3 x-4 y+5 z-9=0\)
4 \(3 x+4 y-5 z-9=0\)
Three Dimensional Geometry

121298 The equation of the plane mid-parallel to the planes \(2 x-3 y+6 z+21=0\) and \(2 x-3 y+6 z-14=0\) is given by .......

1 \(4 x+6 y-12 z+7=0\)
2 \(4 x-6 y-12 z-7=0\)
3 \(4 x-6 y+12 z+7=0\)
4 \(4 x+6 y+12 z-7=0\)
Three Dimensional Geometry

121300 The equation of the plane in normal form which passes through the points \((-2,1,3),(1,1\), \(1)\) and \((2,3,4)\) is

1 \(\left(\frac{2}{3}\right) \mathrm{x}+\left(-\frac{2}{3}\right) \mathrm{y}+\left(\frac{1}{3}\right) \mathrm{z}=\frac{1}{3}\)
2 \(\left(-\frac{2}{3}\right) \mathrm{x}+\left(\frac{2}{3}\right) \mathrm{y}+\left(-\frac{1}{3}\right) \mathrm{z}=\frac{1}{3}\)
3 \(\left(\frac{-4}{\sqrt{173}}\right) x+\left(\frac{11}{\sqrt{173}}\right) y+\left(\frac{-6}{\sqrt{173}}\right) z=\frac{1}{\sqrt{173}}\)
4 \(\left(\frac{4}{\sqrt{173}}\right) \mathrm{x}+\left(\frac{-11}{\sqrt{173}}\right) \mathrm{y}+\left(\frac{6}{\sqrt{173}}\right) \mathrm{z}=\frac{1}{\sqrt{173}}\)
Three Dimensional Geometry

121306 For non-coplanar vectors \(a, b\) and \(c\), if the point of intersection of the line \(r=a+t(b-c)\) and the plane \(\mathbf{r}=\mathbf{b}+\mathbf{c}+\mathbf{x}(\mathbf{a}-\mathbf{b})+\mathbf{y}(\mathbf{c}+\mathbf{a})\) is \(l a+m b+n c\), then \(3 l+4 m+2 n=\)

1 0
2 \(\frac{1}{2}\)
3 2
4 1
Three Dimensional Geometry

121290 The equation of the plane through the points \((2,2,1)\) and \((9,3,6)\) and perpendicular to the plane \(2 x+6 y+6 z-1=0\) is

1 \(3 x+4 y+5 z+9=0\)
2 \(3 \mathrm{x}+4 \mathrm{y}-5 \mathrm{z}+9=0\)
3 \(3 x-4 y+5 z-9=0\)
4 \(3 x+4 y-5 z-9=0\)
Three Dimensional Geometry

121298 The equation of the plane mid-parallel to the planes \(2 x-3 y+6 z+21=0\) and \(2 x-3 y+6 z-14=0\) is given by .......

1 \(4 x+6 y-12 z+7=0\)
2 \(4 x-6 y-12 z-7=0\)
3 \(4 x-6 y+12 z+7=0\)
4 \(4 x+6 y+12 z-7=0\)
Three Dimensional Geometry

121300 The equation of the plane in normal form which passes through the points \((-2,1,3),(1,1\), \(1)\) and \((2,3,4)\) is

1 \(\left(\frac{2}{3}\right) \mathrm{x}+\left(-\frac{2}{3}\right) \mathrm{y}+\left(\frac{1}{3}\right) \mathrm{z}=\frac{1}{3}\)
2 \(\left(-\frac{2}{3}\right) \mathrm{x}+\left(\frac{2}{3}\right) \mathrm{y}+\left(-\frac{1}{3}\right) \mathrm{z}=\frac{1}{3}\)
3 \(\left(\frac{-4}{\sqrt{173}}\right) x+\left(\frac{11}{\sqrt{173}}\right) y+\left(\frac{-6}{\sqrt{173}}\right) z=\frac{1}{\sqrt{173}}\)
4 \(\left(\frac{4}{\sqrt{173}}\right) \mathrm{x}+\left(\frac{-11}{\sqrt{173}}\right) \mathrm{y}+\left(\frac{6}{\sqrt{173}}\right) \mathrm{z}=\frac{1}{\sqrt{173}}\)
Three Dimensional Geometry

121306 For non-coplanar vectors \(a, b\) and \(c\), if the point of intersection of the line \(r=a+t(b-c)\) and the plane \(\mathbf{r}=\mathbf{b}+\mathbf{c}+\mathbf{x}(\mathbf{a}-\mathbf{b})+\mathbf{y}(\mathbf{c}+\mathbf{a})\) is \(l a+m b+n c\), then \(3 l+4 m+2 n=\)

1 0
2 \(\frac{1}{2}\)
3 2
4 1
Three Dimensional Geometry

121290 The equation of the plane through the points \((2,2,1)\) and \((9,3,6)\) and perpendicular to the plane \(2 x+6 y+6 z-1=0\) is

1 \(3 x+4 y+5 z+9=0\)
2 \(3 \mathrm{x}+4 \mathrm{y}-5 \mathrm{z}+9=0\)
3 \(3 x-4 y+5 z-9=0\)
4 \(3 x+4 y-5 z-9=0\)
Three Dimensional Geometry

121298 The equation of the plane mid-parallel to the planes \(2 x-3 y+6 z+21=0\) and \(2 x-3 y+6 z-14=0\) is given by .......

1 \(4 x+6 y-12 z+7=0\)
2 \(4 x-6 y-12 z-7=0\)
3 \(4 x-6 y+12 z+7=0\)
4 \(4 x+6 y+12 z-7=0\)
Three Dimensional Geometry

121300 The equation of the plane in normal form which passes through the points \((-2,1,3),(1,1\), \(1)\) and \((2,3,4)\) is

1 \(\left(\frac{2}{3}\right) \mathrm{x}+\left(-\frac{2}{3}\right) \mathrm{y}+\left(\frac{1}{3}\right) \mathrm{z}=\frac{1}{3}\)
2 \(\left(-\frac{2}{3}\right) \mathrm{x}+\left(\frac{2}{3}\right) \mathrm{y}+\left(-\frac{1}{3}\right) \mathrm{z}=\frac{1}{3}\)
3 \(\left(\frac{-4}{\sqrt{173}}\right) x+\left(\frac{11}{\sqrt{173}}\right) y+\left(\frac{-6}{\sqrt{173}}\right) z=\frac{1}{\sqrt{173}}\)
4 \(\left(\frac{4}{\sqrt{173}}\right) \mathrm{x}+\left(\frac{-11}{\sqrt{173}}\right) \mathrm{y}+\left(\frac{6}{\sqrt{173}}\right) \mathrm{z}=\frac{1}{\sqrt{173}}\)