121233 Let \(\mathrm{m}\) be the unit vector orthogonal to the vector \(\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\) and coplanar with the vectors \(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}\) and \(\hat{\mathbf{j}}-\hat{\mathbf{k}}\). If \(\mathbf{a}=\hat{\mathbf{i}}-\hat{\mathbf{k}}\), then the length of the perpendicular from the origin to the plane \(\mathbf{r} \cdot \mathbf{m}=\mathbf{a} \cdot \mathbf{m}\) is
121233 Let \(\mathrm{m}\) be the unit vector orthogonal to the vector \(\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\) and coplanar with the vectors \(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}\) and \(\hat{\mathbf{j}}-\hat{\mathbf{k}}\). If \(\mathbf{a}=\hat{\mathbf{i}}-\hat{\mathbf{k}}\), then the length of the perpendicular from the origin to the plane \(\mathbf{r} \cdot \mathbf{m}=\mathbf{a} \cdot \mathbf{m}\) is
121233 Let \(\mathrm{m}\) be the unit vector orthogonal to the vector \(\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\) and coplanar with the vectors \(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}\) and \(\hat{\mathbf{j}}-\hat{\mathbf{k}}\). If \(\mathbf{a}=\hat{\mathbf{i}}-\hat{\mathbf{k}}\), then the length of the perpendicular from the origin to the plane \(\mathbf{r} \cdot \mathbf{m}=\mathbf{a} \cdot \mathbf{m}\) is
121233 Let \(\mathrm{m}\) be the unit vector orthogonal to the vector \(\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\) and coplanar with the vectors \(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}\) and \(\hat{\mathbf{j}}-\hat{\mathbf{k}}\). If \(\mathbf{a}=\hat{\mathbf{i}}-\hat{\mathbf{k}}\), then the length of the perpendicular from the origin to the plane \(\mathbf{r} \cdot \mathbf{m}=\mathbf{a} \cdot \mathbf{m}\) is