Skew Lines and Coplanar Lines
Three Dimensional Geometry

121218 The lines \(\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k}\) and \(\frac{\mathrm{x}-1}{\mathrm{k}}=\frac{\mathrm{y}-4}{2}=\frac{\mathrm{z}-5}{1}\) are coplanar, if

1 \(\mathrm{k}=3\) or -3
2 \(\mathrm{k}=0\) or -1
3 \(\mathrm{k}=0\) or -3
4 \(\mathrm{k}=1\) or -1
Three Dimensional Geometry

121222 The shortest distance between the lines \(\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}\) and \(\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}\)

1 \(\frac{1}{2} \sqrt{29}\) units
2 \(2 \sqrt{29}\) units
3 \(\sqrt{29}\) units
4 \(\frac{1}{4} \sqrt{29}\) units
Three Dimensional Geometry

121224 If the shortest distance between the lines \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) and \(\frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}\) is \(d\), then [d], where [ ] is the greatest integer function, is equal to

1 0
2 1
3 2
4 3
Three Dimensional Geometry

121225 The line \(l_1\) passes through the point \((2,6,2)\) and is perpendicular to the plane \(2 x+y-2 z=10\). Then the shortest distance between the line \(l_1\) and the line \(\frac{x+1}{2}=\frac{y+4}{-3}=\frac{z}{2}\) is :

1 \(\frac{19}{3}\)
2 7
3 9
4 \(\frac{13}{3}\)
Three Dimensional Geometry

121218 The lines \(\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k}\) and \(\frac{\mathrm{x}-1}{\mathrm{k}}=\frac{\mathrm{y}-4}{2}=\frac{\mathrm{z}-5}{1}\) are coplanar, if

1 \(\mathrm{k}=3\) or -3
2 \(\mathrm{k}=0\) or -1
3 \(\mathrm{k}=0\) or -3
4 \(\mathrm{k}=1\) or -1
Three Dimensional Geometry

121222 The shortest distance between the lines \(\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}\) and \(\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}\)

1 \(\frac{1}{2} \sqrt{29}\) units
2 \(2 \sqrt{29}\) units
3 \(\sqrt{29}\) units
4 \(\frac{1}{4} \sqrt{29}\) units
Three Dimensional Geometry

121224 If the shortest distance between the lines \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) and \(\frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}\) is \(d\), then [d], where [ ] is the greatest integer function, is equal to

1 0
2 1
3 2
4 3
Three Dimensional Geometry

121225 The line \(l_1\) passes through the point \((2,6,2)\) and is perpendicular to the plane \(2 x+y-2 z=10\). Then the shortest distance between the line \(l_1\) and the line \(\frac{x+1}{2}=\frac{y+4}{-3}=\frac{z}{2}\) is :

1 \(\frac{19}{3}\)
2 7
3 9
4 \(\frac{13}{3}\)
Three Dimensional Geometry

121218 The lines \(\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k}\) and \(\frac{\mathrm{x}-1}{\mathrm{k}}=\frac{\mathrm{y}-4}{2}=\frac{\mathrm{z}-5}{1}\) are coplanar, if

1 \(\mathrm{k}=3\) or -3
2 \(\mathrm{k}=0\) or -1
3 \(\mathrm{k}=0\) or -3
4 \(\mathrm{k}=1\) or -1
Three Dimensional Geometry

121222 The shortest distance between the lines \(\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}\) and \(\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}\)

1 \(\frac{1}{2} \sqrt{29}\) units
2 \(2 \sqrt{29}\) units
3 \(\sqrt{29}\) units
4 \(\frac{1}{4} \sqrt{29}\) units
Three Dimensional Geometry

121224 If the shortest distance between the lines \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) and \(\frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}\) is \(d\), then [d], where [ ] is the greatest integer function, is equal to

1 0
2 1
3 2
4 3
Three Dimensional Geometry

121225 The line \(l_1\) passes through the point \((2,6,2)\) and is perpendicular to the plane \(2 x+y-2 z=10\). Then the shortest distance between the line \(l_1\) and the line \(\frac{x+1}{2}=\frac{y+4}{-3}=\frac{z}{2}\) is :

1 \(\frac{19}{3}\)
2 7
3 9
4 \(\frac{13}{3}\)
Three Dimensional Geometry

121218 The lines \(\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k}\) and \(\frac{\mathrm{x}-1}{\mathrm{k}}=\frac{\mathrm{y}-4}{2}=\frac{\mathrm{z}-5}{1}\) are coplanar, if

1 \(\mathrm{k}=3\) or -3
2 \(\mathrm{k}=0\) or -1
3 \(\mathrm{k}=0\) or -3
4 \(\mathrm{k}=1\) or -1
Three Dimensional Geometry

121222 The shortest distance between the lines \(\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}\) and \(\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}\)

1 \(\frac{1}{2} \sqrt{29}\) units
2 \(2 \sqrt{29}\) units
3 \(\sqrt{29}\) units
4 \(\frac{1}{4} \sqrt{29}\) units
Three Dimensional Geometry

121224 If the shortest distance between the lines \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) and \(\frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}\) is \(d\), then [d], where [ ] is the greatest integer function, is equal to

1 0
2 1
3 2
4 3
Three Dimensional Geometry

121225 The line \(l_1\) passes through the point \((2,6,2)\) and is perpendicular to the plane \(2 x+y-2 z=10\). Then the shortest distance between the line \(l_1\) and the line \(\frac{x+1}{2}=\frac{y+4}{-3}=\frac{z}{2}\) is :

1 \(\frac{19}{3}\)
2 7
3 9
4 \(\frac{13}{3}\)