Skew Lines and Coplanar Lines
Three Dimensional Geometry

121217 Two lines
\(\mathrm{L}_1: \mathrm{x}=5, \frac{\mathrm{y}}{3-\alpha}=\frac{\mathrm{z}}{-2}, \mathrm{~L}_2: \mathrm{x}=\alpha, \frac{\mathrm{y}}{-1}=\frac{\mathrm{z}}{2-\alpha}\) are coplanar. Then \(\alpha\) can take value (s)

1 \(1,2,5\)
2 \(1,4,5\)
3 \(3,4,5\)
4 \(2,4,5\)
Three Dimensional Geometry

121220 If the origin and the points \((1,2,3),(2,3,4)\) and \((x, y, z)\) are coplanar, then

1 \(z-2 x+y=0\)
2 \(x-2 y+z+1=0\)
3 \(x+y+z=6\)
4 \(x-2 y+z=0\)
Three Dimensional Geometry

121221 The shortest distance between the lines \(\frac{x-5}{1}=\frac{y-2}{2}=\frac{z-4}{-3}\) and \(\frac{x+3}{1}=\frac{y+5}{4}=\frac{z-1}{-5}\) is

1 \(7 \sqrt{3}\)
2 \(6 \sqrt{3}\)
3 \(4 \sqrt{3}\)
4 \(5 \sqrt{3}\)
Three Dimensional Geometry

121223 If the shortest distance between the lines
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{\lambda} \text { and } \frac{x-2}{1}=\frac{y-4}{4}=\frac{z-5}{5}\)
is \(\frac{1}{\sqrt{3}}\), then the sum of all possible values of \(\lambda\) is:

1 16
2 6
3 12
4 15
Three Dimensional Geometry

121217 Two lines
\(\mathrm{L}_1: \mathrm{x}=5, \frac{\mathrm{y}}{3-\alpha}=\frac{\mathrm{z}}{-2}, \mathrm{~L}_2: \mathrm{x}=\alpha, \frac{\mathrm{y}}{-1}=\frac{\mathrm{z}}{2-\alpha}\) are coplanar. Then \(\alpha\) can take value (s)

1 \(1,2,5\)
2 \(1,4,5\)
3 \(3,4,5\)
4 \(2,4,5\)
Three Dimensional Geometry

121220 If the origin and the points \((1,2,3),(2,3,4)\) and \((x, y, z)\) are coplanar, then

1 \(z-2 x+y=0\)
2 \(x-2 y+z+1=0\)
3 \(x+y+z=6\)
4 \(x-2 y+z=0\)
Three Dimensional Geometry

121221 The shortest distance between the lines \(\frac{x-5}{1}=\frac{y-2}{2}=\frac{z-4}{-3}\) and \(\frac{x+3}{1}=\frac{y+5}{4}=\frac{z-1}{-5}\) is

1 \(7 \sqrt{3}\)
2 \(6 \sqrt{3}\)
3 \(4 \sqrt{3}\)
4 \(5 \sqrt{3}\)
Three Dimensional Geometry

121223 If the shortest distance between the lines
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{\lambda} \text { and } \frac{x-2}{1}=\frac{y-4}{4}=\frac{z-5}{5}\)
is \(\frac{1}{\sqrt{3}}\), then the sum of all possible values of \(\lambda\) is:

1 16
2 6
3 12
4 15
Three Dimensional Geometry

121217 Two lines
\(\mathrm{L}_1: \mathrm{x}=5, \frac{\mathrm{y}}{3-\alpha}=\frac{\mathrm{z}}{-2}, \mathrm{~L}_2: \mathrm{x}=\alpha, \frac{\mathrm{y}}{-1}=\frac{\mathrm{z}}{2-\alpha}\) are coplanar. Then \(\alpha\) can take value (s)

1 \(1,2,5\)
2 \(1,4,5\)
3 \(3,4,5\)
4 \(2,4,5\)
Three Dimensional Geometry

121220 If the origin and the points \((1,2,3),(2,3,4)\) and \((x, y, z)\) are coplanar, then

1 \(z-2 x+y=0\)
2 \(x-2 y+z+1=0\)
3 \(x+y+z=6\)
4 \(x-2 y+z=0\)
Three Dimensional Geometry

121221 The shortest distance between the lines \(\frac{x-5}{1}=\frac{y-2}{2}=\frac{z-4}{-3}\) and \(\frac{x+3}{1}=\frac{y+5}{4}=\frac{z-1}{-5}\) is

1 \(7 \sqrt{3}\)
2 \(6 \sqrt{3}\)
3 \(4 \sqrt{3}\)
4 \(5 \sqrt{3}\)
Three Dimensional Geometry

121223 If the shortest distance between the lines
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{\lambda} \text { and } \frac{x-2}{1}=\frac{y-4}{4}=\frac{z-5}{5}\)
is \(\frac{1}{\sqrt{3}}\), then the sum of all possible values of \(\lambda\) is:

1 16
2 6
3 12
4 15
Three Dimensional Geometry

121217 Two lines
\(\mathrm{L}_1: \mathrm{x}=5, \frac{\mathrm{y}}{3-\alpha}=\frac{\mathrm{z}}{-2}, \mathrm{~L}_2: \mathrm{x}=\alpha, \frac{\mathrm{y}}{-1}=\frac{\mathrm{z}}{2-\alpha}\) are coplanar. Then \(\alpha\) can take value (s)

1 \(1,2,5\)
2 \(1,4,5\)
3 \(3,4,5\)
4 \(2,4,5\)
Three Dimensional Geometry

121220 If the origin and the points \((1,2,3),(2,3,4)\) and \((x, y, z)\) are coplanar, then

1 \(z-2 x+y=0\)
2 \(x-2 y+z+1=0\)
3 \(x+y+z=6\)
4 \(x-2 y+z=0\)
Three Dimensional Geometry

121221 The shortest distance between the lines \(\frac{x-5}{1}=\frac{y-2}{2}=\frac{z-4}{-3}\) and \(\frac{x+3}{1}=\frac{y+5}{4}=\frac{z-1}{-5}\) is

1 \(7 \sqrt{3}\)
2 \(6 \sqrt{3}\)
3 \(4 \sqrt{3}\)
4 \(5 \sqrt{3}\)
Three Dimensional Geometry

121223 If the shortest distance between the lines
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{\lambda} \text { and } \frac{x-2}{1}=\frac{y-4}{4}=\frac{z-5}{5}\)
is \(\frac{1}{\sqrt{3}}\), then the sum of all possible values of \(\lambda\) is:

1 16
2 6
3 12
4 15