Explanation:
A Two lines are given as -
\(\mathrm{L}_1: \mathrm{x}=5, \frac{\mathrm{y}}{3-\alpha}=\frac{\mathrm{z}}{-2}\) or \(\frac{\mathrm{x}-5}{1}=\frac{\mathrm{y}-0}{3-\alpha}=\frac{\mathrm{z}-0}{-2}\)
\(\mathrm{L}_2: \mathrm{x}=\alpha, \frac{\mathrm{y}}{-1}=\frac{\mathrm{z}}{2-\alpha}\) or \(\frac{\mathrm{x}-\alpha}{1}=\frac{\mathrm{y}-0}{-1}=\frac{\mathrm{z}-0}{2-\alpha}\)
We know that,
For line, \(\mathrm{L}_1 \frac{\mathrm{x}-\mathrm{x}_1}{\mathrm{a}_1}=\frac{\mathrm{y}-\mathrm{y}_1}{\mathrm{~b}_1}=\frac{\mathrm{z}-\mathrm{z}_1}{\mathrm{c}_1}\)
\(\frac{x-5}{1}=\frac{y-0}{3-\alpha}=\frac{z-0}{-2}\) Comparing by equation (i) \(\mathrm{x}_1=5, \mathrm{y}_1=0, \mathrm{z}_1=0\)
\(\mathrm{a}_1=1, \mathrm{~b}_1=3-\alpha, \mathrm{c}_1=-2\)
For line \(L_2, \frac{x-\alpha}{1}=\frac{y-0}{-1}=\frac{z-0}{2-\alpha}\)
\(\mathrm{x}_2=+\alpha, \mathrm{y}_2=0, \mathrm{z}_2=0\) comparing by equation (ii),
\(\mathrm{a}_2=1, \mathrm{~b}_2=-1, \mathrm{c}_2=2-\alpha\)
Two lines are coplanar-
\(\Rightarrow \quad\left|\begin{array}{ccc}\mathrm{x}_2-\mathrm{x}_1 & \mathrm{y}_2-\mathrm{y}_1 & \mathrm{z}_2-\mathrm{z}_1 \\ \mathrm{a}_1 & \mathrm{~b}_1 & \mathrm{c}_1 \\ \mathrm{a}_2 & \mathrm{~b}_2 & \mathrm{c}_2\end{array}\right|=0\)
\(\Rightarrow \quad\left|\begin{array}{lcc}\alpha-5 & 0-0 & 0-0 \\ 1 & 3-\alpha & -2 \\ 1 & -1 & 2-\alpha\end{array}\right|=0\)
\(\Rightarrow \quad\left|\begin{array}{ccc}\alpha-5 & 0 & 0 \\ 1 & 3-\alpha & -2 \\ 1 & -1 & 2-\alpha\end{array}\right|=0\)
\(\Rightarrow \quad(\alpha-5)[(3-\alpha)(2-\alpha)-2]=0\)
\(\Rightarrow \quad(\alpha-5)\left[6-3 \alpha-2 \alpha+\alpha^2-2\right]=0\)
\(\Rightarrow \quad(\alpha-5)\left(\alpha^2-5 \alpha+4\right)=0\)
\(\Rightarrow \quad(\alpha-5)\left(\alpha^2-4 \alpha-\alpha+4\right)=0\)
\(\Rightarrow \quad(\alpha-5)[\alpha(\alpha-4)-1(\alpha-4)]=0\)
\(\Rightarrow \quad(\alpha-5)(\alpha-4)(\alpha-1)=0\)
So,\(\alpha=1,4,5\)