121197
The vector equation of the plane \(\overrightarrow{\mathbf{r}}=(\mathbf{2} \hat{\mathbf{i}}+\hat{\mathbf{k}})+\lambda(\hat{\mathbf{i}})+\boldsymbol{\mu}(\hat{\mathbf{i}}+\mathbf{2} \hat{\mathbf{j}}-\mathbf{3} \hat{\mathbf{k}})\) in
scalar
product form is \(\overrightarrow{\mathbf{r}} \times(3 \hat{\mathbf{i}}+2 \hat{\mathbf{k}})=\alpha\), then \(\alpha=\)
121197
The vector equation of the plane \(\overrightarrow{\mathbf{r}}=(\mathbf{2} \hat{\mathbf{i}}+\hat{\mathbf{k}})+\lambda(\hat{\mathbf{i}})+\boldsymbol{\mu}(\hat{\mathbf{i}}+\mathbf{2} \hat{\mathbf{j}}-\mathbf{3} \hat{\mathbf{k}})\) in
scalar
product form is \(\overrightarrow{\mathbf{r}} \times(3 \hat{\mathbf{i}}+2 \hat{\mathbf{k}})=\alpha\), then \(\alpha=\)