Cartesian and Vector Equations of Line and Plane
Three Dimensional Geometry

121197 The vector equation of the plane \(\overrightarrow{\mathbf{r}}=(\mathbf{2} \hat{\mathbf{i}}+\hat{\mathbf{k}})+\lambda(\hat{\mathbf{i}})+\boldsymbol{\mu}(\hat{\mathbf{i}}+\mathbf{2} \hat{\mathbf{j}}-\mathbf{3} \hat{\mathbf{k}})\) in
scalar
product form is \(\overrightarrow{\mathbf{r}} \times(3 \hat{\mathbf{i}}+2 \hat{\mathbf{k}})=\alpha\), then \(\alpha=\)

1 1
2 2
3 0
4 3
Three Dimensional Geometry

121206 The line joining the points \((1,1,2)\) and \((3,-2\), 1) meets the plane \(3 x+2 y+z=6\) at the point

1 \((1,1,2)\)
2 \((3,-2,1)\)
3 \((2,-3,1)\)
4 \((3,2,1)\)
Three Dimensional Geometry

121197 The vector equation of the plane \(\overrightarrow{\mathbf{r}}=(\mathbf{2} \hat{\mathbf{i}}+\hat{\mathbf{k}})+\lambda(\hat{\mathbf{i}})+\boldsymbol{\mu}(\hat{\mathbf{i}}+\mathbf{2} \hat{\mathbf{j}}-\mathbf{3} \hat{\mathbf{k}})\) in
scalar
product form is \(\overrightarrow{\mathbf{r}} \times(3 \hat{\mathbf{i}}+2 \hat{\mathbf{k}})=\alpha\), then \(\alpha=\)

1 1
2 2
3 0
4 3
Three Dimensional Geometry

121206 The line joining the points \((1,1,2)\) and \((3,-2\), 1) meets the plane \(3 x+2 y+z=6\) at the point

1 \((1,1,2)\)
2 \((3,-2,1)\)
3 \((2,-3,1)\)
4 \((3,2,1)\)