Cartesian and Vector Equations of Line and Plane
Three Dimensional Geometry

121194 If Cartesian equation of the line is x1=2y+ 3=3z, then its vector equation is

1 r=(i^3j^+3k^)+λ(2i^+j^2k^)
2 r=(i^3j^+3k^)+λ(i^+12j^k^)
3 r=(i^32j^+3k^)+λ(2i^+j^2k^)
4 r=(i^+32j^3k^)+λ(2i^+j^2k^)
Three Dimensional Geometry

121195 The equation of the line passing through the point (1,2,3) and perpendicular to the lines x11=y22=z33 and r=λ(3i^+2j^+5k^) is

1 r¯=(i^+2j^+3k^)+λ(2i^7j^+4k^)
2 r¯=(i^+2j^+3k^)+λ(2i^+7j^4k^)
3 r¯=(i^+2j^+3k^)+λ(2i^7j^4k^)
4 r¯=(i^+2j^+3k^)+λ(2i^+7j^+4k^)
Three Dimensional Geometry

121199 If planes r×(pi^j^+2k^)+3=0 and r×(i^pj^k^)5=0 include angle π3, then the value of p is

1 1,3
2 1,3
3 -3
4 3
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Three Dimensional Geometry

121194 If Cartesian equation of the line is x1=2y+ 3=3z, then its vector equation is

1 r=(i^3j^+3k^)+λ(2i^+j^2k^)
2 r=(i^3j^+3k^)+λ(i^+12j^k^)
3 r=(i^32j^+3k^)+λ(2i^+j^2k^)
4 r=(i^+32j^3k^)+λ(2i^+j^2k^)
Three Dimensional Geometry

121195 The equation of the line passing through the point (1,2,3) and perpendicular to the lines x11=y22=z33 and r=λ(3i^+2j^+5k^) is

1 r¯=(i^+2j^+3k^)+λ(2i^7j^+4k^)
2 r¯=(i^+2j^+3k^)+λ(2i^+7j^4k^)
3 r¯=(i^+2j^+3k^)+λ(2i^7j^4k^)
4 r¯=(i^+2j^+3k^)+λ(2i^+7j^+4k^)
Three Dimensional Geometry

121198 The equation of the plane passing through the point (1,2,1) and perpendicular to the line joining the points (3,1,2) and (2,3,4) is

1 r(5i^2i^2k^)=1
2 r(5i^+2j^+2k^)=1
3 r(5i^+2j^+2k^)=1
4 r(5i^2j^+2k^)=5
Three Dimensional Geometry

121199 If planes r×(pi^j^+2k^)+3=0 and r×(i^pj^k^)5=0 include angle π3, then the value of p is

1 1,3
2 1,3
3 -3
4 3
Three Dimensional Geometry

121194 If Cartesian equation of the line is x1=2y+ 3=3z, then its vector equation is

1 r=(i^3j^+3k^)+λ(2i^+j^2k^)
2 r=(i^3j^+3k^)+λ(i^+12j^k^)
3 r=(i^32j^+3k^)+λ(2i^+j^2k^)
4 r=(i^+32j^3k^)+λ(2i^+j^2k^)
Three Dimensional Geometry

121195 The equation of the line passing through the point (1,2,3) and perpendicular to the lines x11=y22=z33 and r=λ(3i^+2j^+5k^) is

1 r¯=(i^+2j^+3k^)+λ(2i^7j^+4k^)
2 r¯=(i^+2j^+3k^)+λ(2i^+7j^4k^)
3 r¯=(i^+2j^+3k^)+λ(2i^7j^4k^)
4 r¯=(i^+2j^+3k^)+λ(2i^+7j^+4k^)
Three Dimensional Geometry

121198 The equation of the plane passing through the point (1,2,1) and perpendicular to the line joining the points (3,1,2) and (2,3,4) is

1 r(5i^2i^2k^)=1
2 r(5i^+2j^+2k^)=1
3 r(5i^+2j^+2k^)=1
4 r(5i^2j^+2k^)=5
Three Dimensional Geometry

121199 If planes r×(pi^j^+2k^)+3=0 and r×(i^pj^k^)5=0 include angle π3, then the value of p is

1 1,3
2 1,3
3 -3
4 3
Three Dimensional Geometry

121194 If Cartesian equation of the line is x1=2y+ 3=3z, then its vector equation is

1 r=(i^3j^+3k^)+λ(2i^+j^2k^)
2 r=(i^3j^+3k^)+λ(i^+12j^k^)
3 r=(i^32j^+3k^)+λ(2i^+j^2k^)
4 r=(i^+32j^3k^)+λ(2i^+j^2k^)
Three Dimensional Geometry

121195 The equation of the line passing through the point (1,2,3) and perpendicular to the lines x11=y22=z33 and r=λ(3i^+2j^+5k^) is

1 r¯=(i^+2j^+3k^)+λ(2i^7j^+4k^)
2 r¯=(i^+2j^+3k^)+λ(2i^+7j^4k^)
3 r¯=(i^+2j^+3k^)+λ(2i^7j^4k^)
4 r¯=(i^+2j^+3k^)+λ(2i^+7j^+4k^)
Three Dimensional Geometry

121198 The equation of the plane passing through the point (1,2,1) and perpendicular to the line joining the points (3,1,2) and (2,3,4) is

1 r(5i^2i^2k^)=1
2 r(5i^+2j^+2k^)=1
3 r(5i^+2j^+2k^)=1
4 r(5i^2j^+2k^)=5
Three Dimensional Geometry

121199 If planes r×(pi^j^+2k^)+3=0 and r×(i^pj^k^)5=0 include angle π3, then the value of p is

1 1,3
2 1,3
3 -3
4 3