121170 If P(3,4,5),Q(4,6,3),R(−1,2,4),S(1,0,5), then the projection of RS on PQ is
B P(3,4,5),Q(4,6,3),R(−1,2,4),S(1,0,5) Direction Ratio of PQ=[(4−3),(6−4),(3−5)] =[1,2,−2] Direction Ratio of RS =(2,−2,1) We know that, projection of a→ on b→ is given by a→⋅b→|b→| =(RS)⋅(PQ)|PQ| =(2i^−2j^+k^)⋅(i^+2j^−2k^)(1)2+(2)2+(−2)2 =2−4−29=−43 ∴ The projection of RS on PQ is =(RS)⋅(PQ)|PQ| =(2i^−2j^+k^)⋅(i^+2j^−2k^)(1)2+(2)2+(−2)2 =2−4−29=−43
121172 If (12,13,n) are the direction cosines of a line, then the value of n is
A Since, (12,13,n) are the direction cosines of a line, then (12)2+(13)2+n2=114+19+n2=1n2=1−14−19n2=2336n=2336=236Hence, option (a) is correct
121173 A ray makes angles π3 and π4 with Y and Z axes respectively. Then the value of the sine of the angle made by the ray with X-axis is
A Given that,A ray make on angle π3 and π4 with y and z axis respectively.Then we have,cos2α+cos2β+cos2γ=1cos2α+cos2(π/3)+cos2(π/4)=1cos2α+(12)2+(12)2=1cos2α+14+12=1cos2α=1−14−12=4−1−24=14∵sin2α+cos2α=1∴sin2α=1−14=34sinα=32
121174 If a line makes angles 90∘,135∘ and 45∘ with the positive directions of x,y,z-axes respectively, then its direction cosines are......
A Dc's arel=cos2α=cos90∘=0 m=cos2β=cos135∘=−12 and n=cos2γ=cos45∘=12So, (l, m,n)=(0,−12,12)
121175 If (2,−1,2) and (K,−3,−5) are the triads of direction ratios of two lines and the angle between the lines is 60∘, then
C Applying the formula for angle between 2 lines based on direction ratio:cosθ=a1a2+b1 b2+c1c2a12+b12+c12a22+b22+c22=2 K+3+(−10)4+1+4K2+9+25cos60∘=2 K−79K2+3412=2 K−73K2+34⇒3K2+34=2(2 K−7)⇒Squareonbothside,29(∵cos60∘=12)⇒9 K2+306=4(4 K2+49−28 K)⇒7 K2−112 K−110=0⇒ Square on both side,