121149
Consider the lines \(L_1\) and \(L_2\) given by
\(L_1: \frac{x-1}{2}=\frac{y-3}{1}=\frac{z-2}{2}\)
\(L_2: \frac{x-2}{2}=\frac{y-2}{2}=\frac{z-3}{3}\)
A line \(\mathrm{L}_3\) having direction ratios \(1,-1,-2\), intersects \(L_1\) and \(L_2\) at the point \(P\) and \(Q\) respectively. The length of the line segment \(P Q\) is
121149
Consider the lines \(L_1\) and \(L_2\) given by
\(L_1: \frac{x-1}{2}=\frac{y-3}{1}=\frac{z-2}{2}\)
\(L_2: \frac{x-2}{2}=\frac{y-2}{2}=\frac{z-3}{3}\)
A line \(\mathrm{L}_3\) having direction ratios \(1,-1,-2\), intersects \(L_1\) and \(L_2\) at the point \(P\) and \(Q\) respectively. The length of the line segment \(P Q\) is
121149
Consider the lines \(L_1\) and \(L_2\) given by
\(L_1: \frac{x-1}{2}=\frac{y-3}{1}=\frac{z-2}{2}\)
\(L_2: \frac{x-2}{2}=\frac{y-2}{2}=\frac{z-3}{3}\)
A line \(\mathrm{L}_3\) having direction ratios \(1,-1,-2\), intersects \(L_1\) and \(L_2\) at the point \(P\) and \(Q\) respectively. The length of the line segment \(P Q\) is
121149
Consider the lines \(L_1\) and \(L_2\) given by
\(L_1: \frac{x-1}{2}=\frac{y-3}{1}=\frac{z-2}{2}\)
\(L_2: \frac{x-2}{2}=\frac{y-2}{2}=\frac{z-3}{3}\)
A line \(\mathrm{L}_3\) having direction ratios \(1,-1,-2\), intersects \(L_1\) and \(L_2\) at the point \(P\) and \(Q\) respectively. The length of the line segment \(P Q\) is