Co-ordinate of a Point in Space
Three Dimensional Geometry

121092 Let the foot of the perpendicular from the point \((1,2,4)\) on the line \(\frac{x+2}{4}=\frac{y-1}{2}=\frac{z+1}{3}\) be \(P\). Then the distance of \(P\) from the plane \(3 x+4 y+\) \(12 z+23=0\)

1 5
2 \(\frac{50}{13}\)
3 4
4 \(\frac{63}{13}\)
Three Dimensional Geometry

121109 For \(\mathbf{A}(1,-2,4), \mathrm{B}(5,-1,7), \mathrm{C}(3,6,-2)\), \(D(4,5,-1)\) the projection of \(\overline{\mathrm{AB}}\) on \(\overline{\mathrm{CD}}\) is \(\qquad\)

1 \((2 \sqrt{3},-2 \sqrt{3}, 2 \sqrt{3})\)
2 \(\frac{3}{13}(4,1,3)\)
3 \((1,-1,1)\)
4 \((2,-2,2)\)
Three Dimensional Geometry

121092 Let the foot of the perpendicular from the point \((1,2,4)\) on the line \(\frac{x+2}{4}=\frac{y-1}{2}=\frac{z+1}{3}\) be \(P\). Then the distance of \(P\) from the plane \(3 x+4 y+\) \(12 z+23=0\)

1 5
2 \(\frac{50}{13}\)
3 4
4 \(\frac{63}{13}\)
Three Dimensional Geometry

121109 For \(\mathbf{A}(1,-2,4), \mathrm{B}(5,-1,7), \mathrm{C}(3,6,-2)\), \(D(4,5,-1)\) the projection of \(\overline{\mathrm{AB}}\) on \(\overline{\mathrm{CD}}\) is \(\qquad\)

1 \((2 \sqrt{3},-2 \sqrt{3}, 2 \sqrt{3})\)
2 \(\frac{3}{13}(4,1,3)\)
3 \((1,-1,1)\)
4 \((2,-2,2)\)