Co-ordinate of a Point in Space
Three Dimensional Geometry

121108 If \(2 x+3 y-z+7=0\) and \(x-2 y+k z+2=0\) are two perpendicular planes, then \(k=\) \(\qquad\)

1 4
2 8
3 -4
4 -8
Three Dimensional Geometry

121110 The point on the plane \(2 x-2 y+4 z+5=0\) that is nearer to \(\left(1, \frac{3}{2}, 2\right)\) is

1 \(\left(0, \frac{5}{2}, 0\right)\)
2 \(\left(-5, \frac{-5}{2}, 0\right)\)
3 \(\left(0,0, \frac{-5}{2}\right)\)
4 \(\left(-, \frac{1}{2}, 0,-1\right)\)
Three Dimensional Geometry

121111 If \(M\) is the foot of the perpendicular drawn from the origin \(O\) on to the variable line \(L\), passing through a fixed point \((a, b)\), then the locus of the mid-point of \(O M\) is

1 \(\mathrm{x}^2+\mathrm{y}^2=\mathrm{a}^2+\mathrm{b}^2\)
2 \(2 x^2+2 y^2-a x-b y=0\)
3 \(a x+b y=0\)
4 \(2 \mathrm{x}^2+2 \mathrm{y}^2-\mathrm{ay}-\mathrm{bx}=0\)
Three Dimensional Geometry

121087 The points \((1,2,3),(-1,-1,-1)\) and \((3,5,7)\) are the vertices of

1 an equilateral triangle
2 an isosceles triangle
3 a right triangle
4 None of these
Three Dimensional Geometry

121108 If \(2 x+3 y-z+7=0\) and \(x-2 y+k z+2=0\) are two perpendicular planes, then \(k=\) \(\qquad\)

1 4
2 8
3 -4
4 -8
Three Dimensional Geometry

121110 The point on the plane \(2 x-2 y+4 z+5=0\) that is nearer to \(\left(1, \frac{3}{2}, 2\right)\) is

1 \(\left(0, \frac{5}{2}, 0\right)\)
2 \(\left(-5, \frac{-5}{2}, 0\right)\)
3 \(\left(0,0, \frac{-5}{2}\right)\)
4 \(\left(-, \frac{1}{2}, 0,-1\right)\)
Three Dimensional Geometry

121111 If \(M\) is the foot of the perpendicular drawn from the origin \(O\) on to the variable line \(L\), passing through a fixed point \((a, b)\), then the locus of the mid-point of \(O M\) is

1 \(\mathrm{x}^2+\mathrm{y}^2=\mathrm{a}^2+\mathrm{b}^2\)
2 \(2 x^2+2 y^2-a x-b y=0\)
3 \(a x+b y=0\)
4 \(2 \mathrm{x}^2+2 \mathrm{y}^2-\mathrm{ay}-\mathrm{bx}=0\)
Three Dimensional Geometry

121087 The points \((1,2,3),(-1,-1,-1)\) and \((3,5,7)\) are the vertices of

1 an equilateral triangle
2 an isosceles triangle
3 a right triangle
4 None of these
Three Dimensional Geometry

121108 If \(2 x+3 y-z+7=0\) and \(x-2 y+k z+2=0\) are two perpendicular planes, then \(k=\) \(\qquad\)

1 4
2 8
3 -4
4 -8
Three Dimensional Geometry

121110 The point on the plane \(2 x-2 y+4 z+5=0\) that is nearer to \(\left(1, \frac{3}{2}, 2\right)\) is

1 \(\left(0, \frac{5}{2}, 0\right)\)
2 \(\left(-5, \frac{-5}{2}, 0\right)\)
3 \(\left(0,0, \frac{-5}{2}\right)\)
4 \(\left(-, \frac{1}{2}, 0,-1\right)\)
Three Dimensional Geometry

121111 If \(M\) is the foot of the perpendicular drawn from the origin \(O\) on to the variable line \(L\), passing through a fixed point \((a, b)\), then the locus of the mid-point of \(O M\) is

1 \(\mathrm{x}^2+\mathrm{y}^2=\mathrm{a}^2+\mathrm{b}^2\)
2 \(2 x^2+2 y^2-a x-b y=0\)
3 \(a x+b y=0\)
4 \(2 \mathrm{x}^2+2 \mathrm{y}^2-\mathrm{ay}-\mathrm{bx}=0\)
Three Dimensional Geometry

121087 The points \((1,2,3),(-1,-1,-1)\) and \((3,5,7)\) are the vertices of

1 an equilateral triangle
2 an isosceles triangle
3 a right triangle
4 None of these
Three Dimensional Geometry

121108 If \(2 x+3 y-z+7=0\) and \(x-2 y+k z+2=0\) are two perpendicular planes, then \(k=\) \(\qquad\)

1 4
2 8
3 -4
4 -8
Three Dimensional Geometry

121110 The point on the plane \(2 x-2 y+4 z+5=0\) that is nearer to \(\left(1, \frac{3}{2}, 2\right)\) is

1 \(\left(0, \frac{5}{2}, 0\right)\)
2 \(\left(-5, \frac{-5}{2}, 0\right)\)
3 \(\left(0,0, \frac{-5}{2}\right)\)
4 \(\left(-, \frac{1}{2}, 0,-1\right)\)
Three Dimensional Geometry

121111 If \(M\) is the foot of the perpendicular drawn from the origin \(O\) on to the variable line \(L\), passing through a fixed point \((a, b)\), then the locus of the mid-point of \(O M\) is

1 \(\mathrm{x}^2+\mathrm{y}^2=\mathrm{a}^2+\mathrm{b}^2\)
2 \(2 x^2+2 y^2-a x-b y=0\)
3 \(a x+b y=0\)
4 \(2 \mathrm{x}^2+2 \mathrm{y}^2-\mathrm{ay}-\mathrm{bx}=0\)
Three Dimensional Geometry

121087 The points \((1,2,3),(-1,-1,-1)\) and \((3,5,7)\) are the vertices of

1 an equilateral triangle
2 an isosceles triangle
3 a right triangle
4 None of these