Different Cases of Two Circles
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Conic Section

119985 The value of \(\lambda\), for which the circle \(x^2+y^2+2 \lambda x+6 y+1=0\) intersects the circle \(x^2+y^2+4 x+2 y=0\) orthogonally, is

1 \(11 / 8\)
2 -1
3 \(-5 / 4\)
4 \(5 / 2\)
Conic Section

119986 The angle between the circles
\(x^2+y^2+4 x+2 y+1=0 \text { and }\)
\(x^2+y^2-2 x+6 y-6=0 \text { is }\)

1 \(\frac{\pi}{6}\)
2 \(\frac{\pi}{3}\)
3 \(\frac{\pi}{2}\)
4 \(\cos ^{-1} \frac{7}{16}\)
Conic Section

119987 The equation of circle passing through the origin and point of intersection of circle \(x^2+y^2\) \(-2 x+4 y-20=0\) and line \(x+y-1=0\) is

1 \(x^2+y^2+22 x-16 y=0\)
2 \(x^2+y^2+22 x+16 y=0\)
3 \(x^2+y^2-22 x-16 y=0\)
4 None of the above
Conic Section

119988 The equation of the radical axis of the circles \(2 x^2+2 y^2+14 x-18 y+15=0\) and \(4 x^2+4 y^2-3 x\) \(-\mathbf{y}+\mathbf{5}=\mathbf{0}\), is

1 \(31 x+35 y-25=0\)
2 \(31 x-35 y+25=0\)
3 \(35 x+31 y-25=0\)
4 \(35 \mathrm{x}-31 \mathrm{y}+25=0\)
Conic Section

119985 The value of \(\lambda\), for which the circle \(x^2+y^2+2 \lambda x+6 y+1=0\) intersects the circle \(x^2+y^2+4 x+2 y=0\) orthogonally, is

1 \(11 / 8\)
2 -1
3 \(-5 / 4\)
4 \(5 / 2\)
Conic Section

119986 The angle between the circles
\(x^2+y^2+4 x+2 y+1=0 \text { and }\)
\(x^2+y^2-2 x+6 y-6=0 \text { is }\)

1 \(\frac{\pi}{6}\)
2 \(\frac{\pi}{3}\)
3 \(\frac{\pi}{2}\)
4 \(\cos ^{-1} \frac{7}{16}\)
Conic Section

119987 The equation of circle passing through the origin and point of intersection of circle \(x^2+y^2\) \(-2 x+4 y-20=0\) and line \(x+y-1=0\) is

1 \(x^2+y^2+22 x-16 y=0\)
2 \(x^2+y^2+22 x+16 y=0\)
3 \(x^2+y^2-22 x-16 y=0\)
4 None of the above
Conic Section

119988 The equation of the radical axis of the circles \(2 x^2+2 y^2+14 x-18 y+15=0\) and \(4 x^2+4 y^2-3 x\) \(-\mathbf{y}+\mathbf{5}=\mathbf{0}\), is

1 \(31 x+35 y-25=0\)
2 \(31 x-35 y+25=0\)
3 \(35 x+31 y-25=0\)
4 \(35 \mathrm{x}-31 \mathrm{y}+25=0\)
Conic Section

119985 The value of \(\lambda\), for which the circle \(x^2+y^2+2 \lambda x+6 y+1=0\) intersects the circle \(x^2+y^2+4 x+2 y=0\) orthogonally, is

1 \(11 / 8\)
2 -1
3 \(-5 / 4\)
4 \(5 / 2\)
Conic Section

119986 The angle between the circles
\(x^2+y^2+4 x+2 y+1=0 \text { and }\)
\(x^2+y^2-2 x+6 y-6=0 \text { is }\)

1 \(\frac{\pi}{6}\)
2 \(\frac{\pi}{3}\)
3 \(\frac{\pi}{2}\)
4 \(\cos ^{-1} \frac{7}{16}\)
Conic Section

119987 The equation of circle passing through the origin and point of intersection of circle \(x^2+y^2\) \(-2 x+4 y-20=0\) and line \(x+y-1=0\) is

1 \(x^2+y^2+22 x-16 y=0\)
2 \(x^2+y^2+22 x+16 y=0\)
3 \(x^2+y^2-22 x-16 y=0\)
4 None of the above
Conic Section

119988 The equation of the radical axis of the circles \(2 x^2+2 y^2+14 x-18 y+15=0\) and \(4 x^2+4 y^2-3 x\) \(-\mathbf{y}+\mathbf{5}=\mathbf{0}\), is

1 \(31 x+35 y-25=0\)
2 \(31 x-35 y+25=0\)
3 \(35 x+31 y-25=0\)
4 \(35 \mathrm{x}-31 \mathrm{y}+25=0\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Conic Section

119985 The value of \(\lambda\), for which the circle \(x^2+y^2+2 \lambda x+6 y+1=0\) intersects the circle \(x^2+y^2+4 x+2 y=0\) orthogonally, is

1 \(11 / 8\)
2 -1
3 \(-5 / 4\)
4 \(5 / 2\)
Conic Section

119986 The angle between the circles
\(x^2+y^2+4 x+2 y+1=0 \text { and }\)
\(x^2+y^2-2 x+6 y-6=0 \text { is }\)

1 \(\frac{\pi}{6}\)
2 \(\frac{\pi}{3}\)
3 \(\frac{\pi}{2}\)
4 \(\cos ^{-1} \frac{7}{16}\)
Conic Section

119987 The equation of circle passing through the origin and point of intersection of circle \(x^2+y^2\) \(-2 x+4 y-20=0\) and line \(x+y-1=0\) is

1 \(x^2+y^2+22 x-16 y=0\)
2 \(x^2+y^2+22 x+16 y=0\)
3 \(x^2+y^2-22 x-16 y=0\)
4 None of the above
Conic Section

119988 The equation of the radical axis of the circles \(2 x^2+2 y^2+14 x-18 y+15=0\) and \(4 x^2+4 y^2-3 x\) \(-\mathbf{y}+\mathbf{5}=\mathbf{0}\), is

1 \(31 x+35 y-25=0\)
2 \(31 x-35 y+25=0\)
3 \(35 x+31 y-25=0\)
4 \(35 \mathrm{x}-31 \mathrm{y}+25=0\)