Tangent and Normal to Circle
Conic Section

119879 The point of intersection of the common tangents drawn to the circles
\(x^2+y^2-4 x-2 y+1=0\) and \(x^2+y^2-6 x-4 y+4=0\) is

1 \(\left(\frac{5}{2}, \frac{3}{2}\right)\)
2 \(\left(\frac{6}{5}, \frac{1}{5}\right)\)
3 \((0,-1)\)
4 \(\left(\frac{12}{5}, \frac{7}{5}\right)\)
Conic Section

119880 If the length of the tangent from \((f, g)\) to the circle \(x^2+y^2=6\) be twice the length of the tangent from the same point to the circle \(x^2+y^2+3 x+3 y=0\), then \(f^2+g^2+4 f+4 g+2\) is equal to

1 -1
2 1
3 0
4 -2
Conic Section

119882 If the lengths of the tangents drawn from \(P\) to the circles \(x^2+y^2-2 x+4 y-20=0\) and \(x^2+y^2-2 x-8 y+1=0\) are in the ratio 2:1, then the locus of \(P\) is

1 \(x^2+y^2+2 x+12 y+8=0\)
2 \(x^2+y^2-2 x+12 y+8=0\)
3 \(x^2+y^2+2 x-12 y+8=0\)
4 \(\mathrm{x}^2+\mathrm{y}^2-2 \mathrm{x}-12 \mathrm{y}+8=0\)
Conic Section

119883 Two tangents to the circle \(x^2+y^2=4\) at the points \(A\) and \(B\) meet at \(M(-4,0)\). The area of the quadrilateral MAOB, where \(O\) is the origin is

1 \(4 \sqrt{3}\) sq. units
2 \(2 \sqrt{3}\) sq. units
3 \(\sqrt{3}\) sq. units
4 \(3 \sqrt{3}\) sq. units
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Conic Section

119879 The point of intersection of the common tangents drawn to the circles
\(x^2+y^2-4 x-2 y+1=0\) and \(x^2+y^2-6 x-4 y+4=0\) is

1 \(\left(\frac{5}{2}, \frac{3}{2}\right)\)
2 \(\left(\frac{6}{5}, \frac{1}{5}\right)\)
3 \((0,-1)\)
4 \(\left(\frac{12}{5}, \frac{7}{5}\right)\)
Conic Section

119880 If the length of the tangent from \((f, g)\) to the circle \(x^2+y^2=6\) be twice the length of the tangent from the same point to the circle \(x^2+y^2+3 x+3 y=0\), then \(f^2+g^2+4 f+4 g+2\) is equal to

1 -1
2 1
3 0
4 -2
Conic Section

119882 If the lengths of the tangents drawn from \(P\) to the circles \(x^2+y^2-2 x+4 y-20=0\) and \(x^2+y^2-2 x-8 y+1=0\) are in the ratio 2:1, then the locus of \(P\) is

1 \(x^2+y^2+2 x+12 y+8=0\)
2 \(x^2+y^2-2 x+12 y+8=0\)
3 \(x^2+y^2+2 x-12 y+8=0\)
4 \(\mathrm{x}^2+\mathrm{y}^2-2 \mathrm{x}-12 \mathrm{y}+8=0\)
Conic Section

119883 Two tangents to the circle \(x^2+y^2=4\) at the points \(A\) and \(B\) meet at \(M(-4,0)\). The area of the quadrilateral MAOB, where \(O\) is the origin is

1 \(4 \sqrt{3}\) sq. units
2 \(2 \sqrt{3}\) sq. units
3 \(\sqrt{3}\) sq. units
4 \(3 \sqrt{3}\) sq. units
Conic Section

119879 The point of intersection of the common tangents drawn to the circles
\(x^2+y^2-4 x-2 y+1=0\) and \(x^2+y^2-6 x-4 y+4=0\) is

1 \(\left(\frac{5}{2}, \frac{3}{2}\right)\)
2 \(\left(\frac{6}{5}, \frac{1}{5}\right)\)
3 \((0,-1)\)
4 \(\left(\frac{12}{5}, \frac{7}{5}\right)\)
Conic Section

119880 If the length of the tangent from \((f, g)\) to the circle \(x^2+y^2=6\) be twice the length of the tangent from the same point to the circle \(x^2+y^2+3 x+3 y=0\), then \(f^2+g^2+4 f+4 g+2\) is equal to

1 -1
2 1
3 0
4 -2
Conic Section

119882 If the lengths of the tangents drawn from \(P\) to the circles \(x^2+y^2-2 x+4 y-20=0\) and \(x^2+y^2-2 x-8 y+1=0\) are in the ratio 2:1, then the locus of \(P\) is

1 \(x^2+y^2+2 x+12 y+8=0\)
2 \(x^2+y^2-2 x+12 y+8=0\)
3 \(x^2+y^2+2 x-12 y+8=0\)
4 \(\mathrm{x}^2+\mathrm{y}^2-2 \mathrm{x}-12 \mathrm{y}+8=0\)
Conic Section

119883 Two tangents to the circle \(x^2+y^2=4\) at the points \(A\) and \(B\) meet at \(M(-4,0)\). The area of the quadrilateral MAOB, where \(O\) is the origin is

1 \(4 \sqrt{3}\) sq. units
2 \(2 \sqrt{3}\) sq. units
3 \(\sqrt{3}\) sq. units
4 \(3 \sqrt{3}\) sq. units
Conic Section

119879 The point of intersection of the common tangents drawn to the circles
\(x^2+y^2-4 x-2 y+1=0\) and \(x^2+y^2-6 x-4 y+4=0\) is

1 \(\left(\frac{5}{2}, \frac{3}{2}\right)\)
2 \(\left(\frac{6}{5}, \frac{1}{5}\right)\)
3 \((0,-1)\)
4 \(\left(\frac{12}{5}, \frac{7}{5}\right)\)
Conic Section

119880 If the length of the tangent from \((f, g)\) to the circle \(x^2+y^2=6\) be twice the length of the tangent from the same point to the circle \(x^2+y^2+3 x+3 y=0\), then \(f^2+g^2+4 f+4 g+2\) is equal to

1 -1
2 1
3 0
4 -2
Conic Section

119882 If the lengths of the tangents drawn from \(P\) to the circles \(x^2+y^2-2 x+4 y-20=0\) and \(x^2+y^2-2 x-8 y+1=0\) are in the ratio 2:1, then the locus of \(P\) is

1 \(x^2+y^2+2 x+12 y+8=0\)
2 \(x^2+y^2-2 x+12 y+8=0\)
3 \(x^2+y^2+2 x-12 y+8=0\)
4 \(\mathrm{x}^2+\mathrm{y}^2-2 \mathrm{x}-12 \mathrm{y}+8=0\)
Conic Section

119883 Two tangents to the circle \(x^2+y^2=4\) at the points \(A\) and \(B\) meet at \(M(-4,0)\). The area of the quadrilateral MAOB, where \(O\) is the origin is

1 \(4 \sqrt{3}\) sq. units
2 \(2 \sqrt{3}\) sq. units
3 \(\sqrt{3}\) sq. units
4 \(3 \sqrt{3}\) sq. units