Equation of Circle in Different Forms
Conic Section

119761 For how many values of \(k\), the line \(3 x-4 y=\lambda\) may touch the circle \(x^2+y^2-4 x-8 y-5=0\) ?

1 1
2 2
3 3
4 None of the values of \(\mathrm{k}\)
Conic Section

119762 The line segment joining the foci of the hyperbola \(x^2-y^2+1=0\) is one of the diameters of a circle. The equation of the circle is

1 \(x^2+y^2=4\)
2 \(x^2+y^2=\sqrt{2}\)
3 \(x^2+y^2=2\)
4 \(x^2+y^2=2 \sqrt{2}\)
Conic Section

119763 If \(P(0,0), Q(1,0)\) and \(R\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\) are three given points, then the centre of the circle for which the lines \(P Q, Q R\) and \(R P\) are the tangents is

1 \(\left(\frac{1}{2}, \frac{1}{4}\right)\)
2 \(\left(\frac{1}{2}, \frac{\sqrt{3}}{4}\right)\)
3 \(\left(\frac{1}{2}, \frac{1}{2 \sqrt{3}}\right)\)
4 \(\left(\frac{1}{2}, \frac{-1}{\sqrt{3}}\right)\)
Conic Section

119764 A variable circle passes through the fixed point \(A(p, q)\) and touches \(x\)-axis. The locus of the other end of the diameter through \(A\) is

1 \((x-p)^2=4 q y\)
2 \((x-q)^2=4 p y\)
3 \((\mathrm{y}-\mathrm{p})^2=4 \mathrm{qx}\)
4 \((y-q)^2=4 \mathrm{px}\)
Conic Section

119761 For how many values of \(k\), the line \(3 x-4 y=\lambda\) may touch the circle \(x^2+y^2-4 x-8 y-5=0\) ?

1 1
2 2
3 3
4 None of the values of \(\mathrm{k}\)
Conic Section

119762 The line segment joining the foci of the hyperbola \(x^2-y^2+1=0\) is one of the diameters of a circle. The equation of the circle is

1 \(x^2+y^2=4\)
2 \(x^2+y^2=\sqrt{2}\)
3 \(x^2+y^2=2\)
4 \(x^2+y^2=2 \sqrt{2}\)
Conic Section

119763 If \(P(0,0), Q(1,0)\) and \(R\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\) are three given points, then the centre of the circle for which the lines \(P Q, Q R\) and \(R P\) are the tangents is

1 \(\left(\frac{1}{2}, \frac{1}{4}\right)\)
2 \(\left(\frac{1}{2}, \frac{\sqrt{3}}{4}\right)\)
3 \(\left(\frac{1}{2}, \frac{1}{2 \sqrt{3}}\right)\)
4 \(\left(\frac{1}{2}, \frac{-1}{\sqrt{3}}\right)\)
Conic Section

119764 A variable circle passes through the fixed point \(A(p, q)\) and touches \(x\)-axis. The locus of the other end of the diameter through \(A\) is

1 \((x-p)^2=4 q y\)
2 \((x-q)^2=4 p y\)
3 \((\mathrm{y}-\mathrm{p})^2=4 \mathrm{qx}\)
4 \((y-q)^2=4 \mathrm{px}\)
Conic Section

119761 For how many values of \(k\), the line \(3 x-4 y=\lambda\) may touch the circle \(x^2+y^2-4 x-8 y-5=0\) ?

1 1
2 2
3 3
4 None of the values of \(\mathrm{k}\)
Conic Section

119762 The line segment joining the foci of the hyperbola \(x^2-y^2+1=0\) is one of the diameters of a circle. The equation of the circle is

1 \(x^2+y^2=4\)
2 \(x^2+y^2=\sqrt{2}\)
3 \(x^2+y^2=2\)
4 \(x^2+y^2=2 \sqrt{2}\)
Conic Section

119763 If \(P(0,0), Q(1,0)\) and \(R\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\) are three given points, then the centre of the circle for which the lines \(P Q, Q R\) and \(R P\) are the tangents is

1 \(\left(\frac{1}{2}, \frac{1}{4}\right)\)
2 \(\left(\frac{1}{2}, \frac{\sqrt{3}}{4}\right)\)
3 \(\left(\frac{1}{2}, \frac{1}{2 \sqrt{3}}\right)\)
4 \(\left(\frac{1}{2}, \frac{-1}{\sqrt{3}}\right)\)
Conic Section

119764 A variable circle passes through the fixed point \(A(p, q)\) and touches \(x\)-axis. The locus of the other end of the diameter through \(A\) is

1 \((x-p)^2=4 q y\)
2 \((x-q)^2=4 p y\)
3 \((\mathrm{y}-\mathrm{p})^2=4 \mathrm{qx}\)
4 \((y-q)^2=4 \mathrm{px}\)
Conic Section

119761 For how many values of \(k\), the line \(3 x-4 y=\lambda\) may touch the circle \(x^2+y^2-4 x-8 y-5=0\) ?

1 1
2 2
3 3
4 None of the values of \(\mathrm{k}\)
Conic Section

119762 The line segment joining the foci of the hyperbola \(x^2-y^2+1=0\) is one of the diameters of a circle. The equation of the circle is

1 \(x^2+y^2=4\)
2 \(x^2+y^2=\sqrt{2}\)
3 \(x^2+y^2=2\)
4 \(x^2+y^2=2 \sqrt{2}\)
Conic Section

119763 If \(P(0,0), Q(1,0)\) and \(R\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\) are three given points, then the centre of the circle for which the lines \(P Q, Q R\) and \(R P\) are the tangents is

1 \(\left(\frac{1}{2}, \frac{1}{4}\right)\)
2 \(\left(\frac{1}{2}, \frac{\sqrt{3}}{4}\right)\)
3 \(\left(\frac{1}{2}, \frac{1}{2 \sqrt{3}}\right)\)
4 \(\left(\frac{1}{2}, \frac{-1}{\sqrt{3}}\right)\)
Conic Section

119764 A variable circle passes through the fixed point \(A(p, q)\) and touches \(x\)-axis. The locus of the other end of the diameter through \(A\) is

1 \((x-p)^2=4 q y\)
2 \((x-q)^2=4 p y\)
3 \((\mathrm{y}-\mathrm{p})^2=4 \mathrm{qx}\)
4 \((y-q)^2=4 \mathrm{px}\)