Equation of Circle in Different Forms
Conic Section

119756 If the lines \(x+2 y-5=0\) and \(3 x-y-1=0\) denote two diameters of a circle of radius 5 units, then the equation of the circle is \(\qquad\)

1 \(x^2+y^2-2 x+4 y-20=0\)
2 \(x^2+y^2-2 x-4 y-20=0\)
3 \(x^2+y^2+2 x-4 y+20=0\)
4 \(x^2+y^2+2 x+4 y+20=0\)
Conic Section

119757 Find the equation of a circle which cuts the circle \(x^2+y^2-6 x+4 y-3=0\) orthogonally while passing through \((3,0)\) and touching the \(y\) axis.

1 \(x^2+y^2+6 x+6 y+9=0\)
2 \(x^2+y^2-6 x-6 y+9=0\)
3 \(x^2+y^2-6 x+6 y-9=0\)
4 \(x^2+y^2+6 x-6 y-9=0\)
Conic Section

119758 Suppose a circle passes through \((2,2)\) and \((9,9)\) and touches the \(x\)-axis at \(P\). If \(O\) is the origin. then \(O P\) is equal to

1 4
2 5
3 6
4 9
Conic Section

119759 Find the equation of the circle which passes through origin and cuts off the intercepts - 2 and 3 over the \(x\) and \(y\) axes respectively.

1 \(x^2+y^2-2 x+8 y=0\)
2 \(2\left(x^2+y^2\right)+2 x-3 y=0\)
3 \(x^2+y^2-2 x-8 y=0\)
4 \(x^2+y^2+2 x-3 y=0\)
Conic Section

119760 The equation of the circle passing through \((0\), \(0)\) and which makes intercepts \(a\) and \(b\) on the coordinate axes is

1 \(x^2+y^2+a x+b y=0\)
2 \(x^2+y^2-a x-b y=0\)
3 \(x^2+y^2-a x+b y=0\)
4 \(x^2+y^2-a x-b x=0\)
Conic Section

119756 If the lines \(x+2 y-5=0\) and \(3 x-y-1=0\) denote two diameters of a circle of radius 5 units, then the equation of the circle is \(\qquad\)

1 \(x^2+y^2-2 x+4 y-20=0\)
2 \(x^2+y^2-2 x-4 y-20=0\)
3 \(x^2+y^2+2 x-4 y+20=0\)
4 \(x^2+y^2+2 x+4 y+20=0\)
Conic Section

119757 Find the equation of a circle which cuts the circle \(x^2+y^2-6 x+4 y-3=0\) orthogonally while passing through \((3,0)\) and touching the \(y\) axis.

1 \(x^2+y^2+6 x+6 y+9=0\)
2 \(x^2+y^2-6 x-6 y+9=0\)
3 \(x^2+y^2-6 x+6 y-9=0\)
4 \(x^2+y^2+6 x-6 y-9=0\)
Conic Section

119758 Suppose a circle passes through \((2,2)\) and \((9,9)\) and touches the \(x\)-axis at \(P\). If \(O\) is the origin. then \(O P\) is equal to

1 4
2 5
3 6
4 9
Conic Section

119759 Find the equation of the circle which passes through origin and cuts off the intercepts - 2 and 3 over the \(x\) and \(y\) axes respectively.

1 \(x^2+y^2-2 x+8 y=0\)
2 \(2\left(x^2+y^2\right)+2 x-3 y=0\)
3 \(x^2+y^2-2 x-8 y=0\)
4 \(x^2+y^2+2 x-3 y=0\)
Conic Section

119760 The equation of the circle passing through \((0\), \(0)\) and which makes intercepts \(a\) and \(b\) on the coordinate axes is

1 \(x^2+y^2+a x+b y=0\)
2 \(x^2+y^2-a x-b y=0\)
3 \(x^2+y^2-a x+b y=0\)
4 \(x^2+y^2-a x-b x=0\)
Conic Section

119756 If the lines \(x+2 y-5=0\) and \(3 x-y-1=0\) denote two diameters of a circle of radius 5 units, then the equation of the circle is \(\qquad\)

1 \(x^2+y^2-2 x+4 y-20=0\)
2 \(x^2+y^2-2 x-4 y-20=0\)
3 \(x^2+y^2+2 x-4 y+20=0\)
4 \(x^2+y^2+2 x+4 y+20=0\)
Conic Section

119757 Find the equation of a circle which cuts the circle \(x^2+y^2-6 x+4 y-3=0\) orthogonally while passing through \((3,0)\) and touching the \(y\) axis.

1 \(x^2+y^2+6 x+6 y+9=0\)
2 \(x^2+y^2-6 x-6 y+9=0\)
3 \(x^2+y^2-6 x+6 y-9=0\)
4 \(x^2+y^2+6 x-6 y-9=0\)
Conic Section

119758 Suppose a circle passes through \((2,2)\) and \((9,9)\) and touches the \(x\)-axis at \(P\). If \(O\) is the origin. then \(O P\) is equal to

1 4
2 5
3 6
4 9
Conic Section

119759 Find the equation of the circle which passes through origin and cuts off the intercepts - 2 and 3 over the \(x\) and \(y\) axes respectively.

1 \(x^2+y^2-2 x+8 y=0\)
2 \(2\left(x^2+y^2\right)+2 x-3 y=0\)
3 \(x^2+y^2-2 x-8 y=0\)
4 \(x^2+y^2+2 x-3 y=0\)
Conic Section

119760 The equation of the circle passing through \((0\), \(0)\) and which makes intercepts \(a\) and \(b\) on the coordinate axes is

1 \(x^2+y^2+a x+b y=0\)
2 \(x^2+y^2-a x-b y=0\)
3 \(x^2+y^2-a x+b y=0\)
4 \(x^2+y^2-a x-b x=0\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Conic Section

119756 If the lines \(x+2 y-5=0\) and \(3 x-y-1=0\) denote two diameters of a circle of radius 5 units, then the equation of the circle is \(\qquad\)

1 \(x^2+y^2-2 x+4 y-20=0\)
2 \(x^2+y^2-2 x-4 y-20=0\)
3 \(x^2+y^2+2 x-4 y+20=0\)
4 \(x^2+y^2+2 x+4 y+20=0\)
Conic Section

119757 Find the equation of a circle which cuts the circle \(x^2+y^2-6 x+4 y-3=0\) orthogonally while passing through \((3,0)\) and touching the \(y\) axis.

1 \(x^2+y^2+6 x+6 y+9=0\)
2 \(x^2+y^2-6 x-6 y+9=0\)
3 \(x^2+y^2-6 x+6 y-9=0\)
4 \(x^2+y^2+6 x-6 y-9=0\)
Conic Section

119758 Suppose a circle passes through \((2,2)\) and \((9,9)\) and touches the \(x\)-axis at \(P\). If \(O\) is the origin. then \(O P\) is equal to

1 4
2 5
3 6
4 9
Conic Section

119759 Find the equation of the circle which passes through origin and cuts off the intercepts - 2 and 3 over the \(x\) and \(y\) axes respectively.

1 \(x^2+y^2-2 x+8 y=0\)
2 \(2\left(x^2+y^2\right)+2 x-3 y=0\)
3 \(x^2+y^2-2 x-8 y=0\)
4 \(x^2+y^2+2 x-3 y=0\)
Conic Section

119760 The equation of the circle passing through \((0\), \(0)\) and which makes intercepts \(a\) and \(b\) on the coordinate axes is

1 \(x^2+y^2+a x+b y=0\)
2 \(x^2+y^2-a x-b y=0\)
3 \(x^2+y^2-a x+b y=0\)
4 \(x^2+y^2-a x-b x=0\)
Conic Section

119756 If the lines \(x+2 y-5=0\) and \(3 x-y-1=0\) denote two diameters of a circle of radius 5 units, then the equation of the circle is \(\qquad\)

1 \(x^2+y^2-2 x+4 y-20=0\)
2 \(x^2+y^2-2 x-4 y-20=0\)
3 \(x^2+y^2+2 x-4 y+20=0\)
4 \(x^2+y^2+2 x+4 y+20=0\)
Conic Section

119757 Find the equation of a circle which cuts the circle \(x^2+y^2-6 x+4 y-3=0\) orthogonally while passing through \((3,0)\) and touching the \(y\) axis.

1 \(x^2+y^2+6 x+6 y+9=0\)
2 \(x^2+y^2-6 x-6 y+9=0\)
3 \(x^2+y^2-6 x+6 y-9=0\)
4 \(x^2+y^2+6 x-6 y-9=0\)
Conic Section

119758 Suppose a circle passes through \((2,2)\) and \((9,9)\) and touches the \(x\)-axis at \(P\). If \(O\) is the origin. then \(O P\) is equal to

1 4
2 5
3 6
4 9
Conic Section

119759 Find the equation of the circle which passes through origin and cuts off the intercepts - 2 and 3 over the \(x\) and \(y\) axes respectively.

1 \(x^2+y^2-2 x+8 y=0\)
2 \(2\left(x^2+y^2\right)+2 x-3 y=0\)
3 \(x^2+y^2-2 x-8 y=0\)
4 \(x^2+y^2+2 x-3 y=0\)
Conic Section

119760 The equation of the circle passing through \((0\), \(0)\) and which makes intercepts \(a\) and \(b\) on the coordinate axes is

1 \(x^2+y^2+a x+b y=0\)
2 \(x^2+y^2-a x-b y=0\)
3 \(x^2+y^2-a x+b y=0\)
4 \(x^2+y^2-a x-b x=0\)