Equation of Circle in Different Forms
Conic Section

119738 If \(\theta\) is a parameter, then the parametric equations of the circle \(x^2+y^2-6 x+4 y-3=0\) are given by

1 \(x=3+4 \sin \theta\) and \(y=2+4 \cos \theta\)
2 \(x=3+4 \cos \theta\) and \(y=-2+4 \sin \theta\)
3 \(x=-3+4 \sin \theta\) and \(y=-2+4 \cos \theta\)
4 \(\mathrm{x}=3+4 \cos \theta\) and \(\mathrm{y}=2+4 \sin \theta\)
Conic Section

119739 The Cartesian equation of the curve given by \(x=6 \cos \theta, y=6 \sin \theta\) is

1 \(x^2+y^2=6\)
2 \(x^2+y^2=5\)
3 \(x^2+y^2=16\)
4 \(x^2+y^2=36\)
Conic Section

119741 If \(\mathbf{A}(3,-2,2), \mathbf{B}(2, \lambda+1,5)\) are the end points of the diameter of the circle and if the point \((5,6,-1)\) lies on the circle, then \(\lambda=\)

1 8
2 7
3 6
4 5
Conic Section

119742 The centre and radius of a circle \(\mathbf{x}=\mathbf{a}\left(\frac{1-t^2}{1+t^2}\right), y=\frac{8 a t}{1+t^2}\), are respectively

1 \((0,0)\) and 2a units
2 \((0,0)\) and \(4 \mathrm{a}\) units
3 \((0,0)\) and \(3 a\) units
4 \((0,0)\) and \(3 \mathrm{a}\) units
Conic Section

119743 If \((a, b)\) and \((4,3)\) are end-points of a diameter of the circle \(x^2+y^2+4 x-6 y+11=0\), then \((a, b)=\)

1 \((-8,3)\)
2 \((8,3)\)
3 \((8,-3)\)
4 \((-8,-3)\)
Conic Section

119738 If \(\theta\) is a parameter, then the parametric equations of the circle \(x^2+y^2-6 x+4 y-3=0\) are given by

1 \(x=3+4 \sin \theta\) and \(y=2+4 \cos \theta\)
2 \(x=3+4 \cos \theta\) and \(y=-2+4 \sin \theta\)
3 \(x=-3+4 \sin \theta\) and \(y=-2+4 \cos \theta\)
4 \(\mathrm{x}=3+4 \cos \theta\) and \(\mathrm{y}=2+4 \sin \theta\)
Conic Section

119739 The Cartesian equation of the curve given by \(x=6 \cos \theta, y=6 \sin \theta\) is

1 \(x^2+y^2=6\)
2 \(x^2+y^2=5\)
3 \(x^2+y^2=16\)
4 \(x^2+y^2=36\)
Conic Section

119741 If \(\mathbf{A}(3,-2,2), \mathbf{B}(2, \lambda+1,5)\) are the end points of the diameter of the circle and if the point \((5,6,-1)\) lies on the circle, then \(\lambda=\)

1 8
2 7
3 6
4 5
Conic Section

119742 The centre and radius of a circle \(\mathbf{x}=\mathbf{a}\left(\frac{1-t^2}{1+t^2}\right), y=\frac{8 a t}{1+t^2}\), are respectively

1 \((0,0)\) and 2a units
2 \((0,0)\) and \(4 \mathrm{a}\) units
3 \((0,0)\) and \(3 a\) units
4 \((0,0)\) and \(3 \mathrm{a}\) units
Conic Section

119743 If \((a, b)\) and \((4,3)\) are end-points of a diameter of the circle \(x^2+y^2+4 x-6 y+11=0\), then \((a, b)=\)

1 \((-8,3)\)
2 \((8,3)\)
3 \((8,-3)\)
4 \((-8,-3)\)
Conic Section

119738 If \(\theta\) is a parameter, then the parametric equations of the circle \(x^2+y^2-6 x+4 y-3=0\) are given by

1 \(x=3+4 \sin \theta\) and \(y=2+4 \cos \theta\)
2 \(x=3+4 \cos \theta\) and \(y=-2+4 \sin \theta\)
3 \(x=-3+4 \sin \theta\) and \(y=-2+4 \cos \theta\)
4 \(\mathrm{x}=3+4 \cos \theta\) and \(\mathrm{y}=2+4 \sin \theta\)
Conic Section

119739 The Cartesian equation of the curve given by \(x=6 \cos \theta, y=6 \sin \theta\) is

1 \(x^2+y^2=6\)
2 \(x^2+y^2=5\)
3 \(x^2+y^2=16\)
4 \(x^2+y^2=36\)
Conic Section

119741 If \(\mathbf{A}(3,-2,2), \mathbf{B}(2, \lambda+1,5)\) are the end points of the diameter of the circle and if the point \((5,6,-1)\) lies on the circle, then \(\lambda=\)

1 8
2 7
3 6
4 5
Conic Section

119742 The centre and radius of a circle \(\mathbf{x}=\mathbf{a}\left(\frac{1-t^2}{1+t^2}\right), y=\frac{8 a t}{1+t^2}\), are respectively

1 \((0,0)\) and 2a units
2 \((0,0)\) and \(4 \mathrm{a}\) units
3 \((0,0)\) and \(3 a\) units
4 \((0,0)\) and \(3 \mathrm{a}\) units
Conic Section

119743 If \((a, b)\) and \((4,3)\) are end-points of a diameter of the circle \(x^2+y^2+4 x-6 y+11=0\), then \((a, b)=\)

1 \((-8,3)\)
2 \((8,3)\)
3 \((8,-3)\)
4 \((-8,-3)\)
Conic Section

119738 If \(\theta\) is a parameter, then the parametric equations of the circle \(x^2+y^2-6 x+4 y-3=0\) are given by

1 \(x=3+4 \sin \theta\) and \(y=2+4 \cos \theta\)
2 \(x=3+4 \cos \theta\) and \(y=-2+4 \sin \theta\)
3 \(x=-3+4 \sin \theta\) and \(y=-2+4 \cos \theta\)
4 \(\mathrm{x}=3+4 \cos \theta\) and \(\mathrm{y}=2+4 \sin \theta\)
Conic Section

119739 The Cartesian equation of the curve given by \(x=6 \cos \theta, y=6 \sin \theta\) is

1 \(x^2+y^2=6\)
2 \(x^2+y^2=5\)
3 \(x^2+y^2=16\)
4 \(x^2+y^2=36\)
Conic Section

119741 If \(\mathbf{A}(3,-2,2), \mathbf{B}(2, \lambda+1,5)\) are the end points of the diameter of the circle and if the point \((5,6,-1)\) lies on the circle, then \(\lambda=\)

1 8
2 7
3 6
4 5
Conic Section

119742 The centre and radius of a circle \(\mathbf{x}=\mathbf{a}\left(\frac{1-t^2}{1+t^2}\right), y=\frac{8 a t}{1+t^2}\), are respectively

1 \((0,0)\) and 2a units
2 \((0,0)\) and \(4 \mathrm{a}\) units
3 \((0,0)\) and \(3 a\) units
4 \((0,0)\) and \(3 \mathrm{a}\) units
Conic Section

119743 If \((a, b)\) and \((4,3)\) are end-points of a diameter of the circle \(x^2+y^2+4 x-6 y+11=0\), then \((a, b)=\)

1 \((-8,3)\)
2 \((8,3)\)
3 \((8,-3)\)
4 \((-8,-3)\)
Conic Section

119738 If \(\theta\) is a parameter, then the parametric equations of the circle \(x^2+y^2-6 x+4 y-3=0\) are given by

1 \(x=3+4 \sin \theta\) and \(y=2+4 \cos \theta\)
2 \(x=3+4 \cos \theta\) and \(y=-2+4 \sin \theta\)
3 \(x=-3+4 \sin \theta\) and \(y=-2+4 \cos \theta\)
4 \(\mathrm{x}=3+4 \cos \theta\) and \(\mathrm{y}=2+4 \sin \theta\)
Conic Section

119739 The Cartesian equation of the curve given by \(x=6 \cos \theta, y=6 \sin \theta\) is

1 \(x^2+y^2=6\)
2 \(x^2+y^2=5\)
3 \(x^2+y^2=16\)
4 \(x^2+y^2=36\)
Conic Section

119741 If \(\mathbf{A}(3,-2,2), \mathbf{B}(2, \lambda+1,5)\) are the end points of the diameter of the circle and if the point \((5,6,-1)\) lies on the circle, then \(\lambda=\)

1 8
2 7
3 6
4 5
Conic Section

119742 The centre and radius of a circle \(\mathbf{x}=\mathbf{a}\left(\frac{1-t^2}{1+t^2}\right), y=\frac{8 a t}{1+t^2}\), are respectively

1 \((0,0)\) and 2a units
2 \((0,0)\) and \(4 \mathrm{a}\) units
3 \((0,0)\) and \(3 a\) units
4 \((0,0)\) and \(3 \mathrm{a}\) units
Conic Section

119743 If \((a, b)\) and \((4,3)\) are end-points of a diameter of the circle \(x^2+y^2+4 x-6 y+11=0\), then \((a, b)=\)

1 \((-8,3)\)
2 \((8,3)\)
3 \((8,-3)\)
4 \((-8,-3)\)