Standard and General Form of Equation of a Circle
Conic Section

119713 If the origin lies on a diameter of the circle \(x^2+\) \(y^2-4 x-2 y-4=0\), then the equation of the circle passing through the end points of that diameter and the point \((1,2)\) is

1 \(x^2+y^2-2 x-4 y=0\)
2 \(3 \mathrm{x}^2+3 \mathrm{y}^2-19 \mathrm{x}+8 \mathrm{y}-12=0\)
3 \(7 x^2+7 y^2-31 x-28 y+17=0\)
4 \(x^2+y^2=5\)
Conic Section

119714 The locus of the mid points of the chords of the circle \(x^2-2 x+y^2=0\) drawn from a point \((0,0)\) on it is

1 \(x^2+y^2-x=0\)
2 \(2 x^2+y-2=0\)
3 \(y^2+x-1=0\)
4 \(y+x^2+2 x-3=0\)
Conic Section

119715 The equation of a circle of radius 5 units touching another circle \(x^2+y^2-2 x-4 y-20=0\) at \((5,5)\) is

1 \(x^2+y^2+18 x+16 y-220=0\)
2 \(x^2+y^2-x-y-40=0\)
3 \(x^2+y^2+2 x-3 y-45=0\)
4 \(x^2+y^2-18 x-16 y+120=0\)
Conic Section

119716 If the polar of a point \(P\) with respect to a circle of radius \(r\) which touches the coordinate axes and lies in the first quadrant is \(x+2 y=4 r\), then the point \(P\) is

1 \((\mathrm{r}, 2 \mathrm{r})\)
2 \((2 \mathrm{r}, \mathrm{r})\)
3 \((2 \mathrm{r}, 3 \mathrm{r})\)
4 \((-r, 4 \mathrm{r})\)
Conic Section

119713 If the origin lies on a diameter of the circle \(x^2+\) \(y^2-4 x-2 y-4=0\), then the equation of the circle passing through the end points of that diameter and the point \((1,2)\) is

1 \(x^2+y^2-2 x-4 y=0\)
2 \(3 \mathrm{x}^2+3 \mathrm{y}^2-19 \mathrm{x}+8 \mathrm{y}-12=0\)
3 \(7 x^2+7 y^2-31 x-28 y+17=0\)
4 \(x^2+y^2=5\)
Conic Section

119714 The locus of the mid points of the chords of the circle \(x^2-2 x+y^2=0\) drawn from a point \((0,0)\) on it is

1 \(x^2+y^2-x=0\)
2 \(2 x^2+y-2=0\)
3 \(y^2+x-1=0\)
4 \(y+x^2+2 x-3=0\)
Conic Section

119715 The equation of a circle of radius 5 units touching another circle \(x^2+y^2-2 x-4 y-20=0\) at \((5,5)\) is

1 \(x^2+y^2+18 x+16 y-220=0\)
2 \(x^2+y^2-x-y-40=0\)
3 \(x^2+y^2+2 x-3 y-45=0\)
4 \(x^2+y^2-18 x-16 y+120=0\)
Conic Section

119716 If the polar of a point \(P\) with respect to a circle of radius \(r\) which touches the coordinate axes and lies in the first quadrant is \(x+2 y=4 r\), then the point \(P\) is

1 \((\mathrm{r}, 2 \mathrm{r})\)
2 \((2 \mathrm{r}, \mathrm{r})\)
3 \((2 \mathrm{r}, 3 \mathrm{r})\)
4 \((-r, 4 \mathrm{r})\)
Conic Section

119713 If the origin lies on a diameter of the circle \(x^2+\) \(y^2-4 x-2 y-4=0\), then the equation of the circle passing through the end points of that diameter and the point \((1,2)\) is

1 \(x^2+y^2-2 x-4 y=0\)
2 \(3 \mathrm{x}^2+3 \mathrm{y}^2-19 \mathrm{x}+8 \mathrm{y}-12=0\)
3 \(7 x^2+7 y^2-31 x-28 y+17=0\)
4 \(x^2+y^2=5\)
Conic Section

119714 The locus of the mid points of the chords of the circle \(x^2-2 x+y^2=0\) drawn from a point \((0,0)\) on it is

1 \(x^2+y^2-x=0\)
2 \(2 x^2+y-2=0\)
3 \(y^2+x-1=0\)
4 \(y+x^2+2 x-3=0\)
Conic Section

119715 The equation of a circle of radius 5 units touching another circle \(x^2+y^2-2 x-4 y-20=0\) at \((5,5)\) is

1 \(x^2+y^2+18 x+16 y-220=0\)
2 \(x^2+y^2-x-y-40=0\)
3 \(x^2+y^2+2 x-3 y-45=0\)
4 \(x^2+y^2-18 x-16 y+120=0\)
Conic Section

119716 If the polar of a point \(P\) with respect to a circle of radius \(r\) which touches the coordinate axes and lies in the first quadrant is \(x+2 y=4 r\), then the point \(P\) is

1 \((\mathrm{r}, 2 \mathrm{r})\)
2 \((2 \mathrm{r}, \mathrm{r})\)
3 \((2 \mathrm{r}, 3 \mathrm{r})\)
4 \((-r, 4 \mathrm{r})\)
Conic Section

119713 If the origin lies on a diameter of the circle \(x^2+\) \(y^2-4 x-2 y-4=0\), then the equation of the circle passing through the end points of that diameter and the point \((1,2)\) is

1 \(x^2+y^2-2 x-4 y=0\)
2 \(3 \mathrm{x}^2+3 \mathrm{y}^2-19 \mathrm{x}+8 \mathrm{y}-12=0\)
3 \(7 x^2+7 y^2-31 x-28 y+17=0\)
4 \(x^2+y^2=5\)
Conic Section

119714 The locus of the mid points of the chords of the circle \(x^2-2 x+y^2=0\) drawn from a point \((0,0)\) on it is

1 \(x^2+y^2-x=0\)
2 \(2 x^2+y-2=0\)
3 \(y^2+x-1=0\)
4 \(y+x^2+2 x-3=0\)
Conic Section

119715 The equation of a circle of radius 5 units touching another circle \(x^2+y^2-2 x-4 y-20=0\) at \((5,5)\) is

1 \(x^2+y^2+18 x+16 y-220=0\)
2 \(x^2+y^2-x-y-40=0\)
3 \(x^2+y^2+2 x-3 y-45=0\)
4 \(x^2+y^2-18 x-16 y+120=0\)
Conic Section

119716 If the polar of a point \(P\) with respect to a circle of radius \(r\) which touches the coordinate axes and lies in the first quadrant is \(x+2 y=4 r\), then the point \(P\) is

1 \((\mathrm{r}, 2 \mathrm{r})\)
2 \((2 \mathrm{r}, \mathrm{r})\)
3 \((2 \mathrm{r}, 3 \mathrm{r})\)
4 \((-r, 4 \mathrm{r})\)