Standard and General Form of Equation of a Circle
Conic Section

119699 The equation of circle with centre \((2,-3)\) and touching \(x\)-axis is

1 \(x^2+y^2-4 x-6 y+4=0\)
2 \(x^2+y^2-4 x-6 y-8=0\)
3 \(x^2+y^2-4 x+6 y+4=0\)
4 \(x^2+y^2+4 x-6 y+8=0\)
Conic Section

119701 For all real values of \(k\), the polar of the point \((2 k, k-4)\) with respect to \(x^2+y^2-4 x-6 y+1=\) 0 passes through the point

1 \((1,1)\)
2 \((1,-1)\)
3 \((-3,1)\)
4 \((3,1)\)
Conic Section

119702 The value of a, such that the power of the point \((1,6)\) with respect to the circle \(x^2+y^2+4 x-6 y\) \(-\mathbf{a}=\mathbf{0}\), is \(-\mathbf{1 6}\) is,

1 7
2 11
3 13
4 21
Conic Section

119703 The radius of the circle passing through the points \((-1,1),(2,-1)\) and \((1,0)\) is

1 5
2 \(\frac{\sqrt{130}}{2}\)
3 6
4 \(\frac{\sqrt{145}}{2}\)
Conic Section

119704 If the circle \(x^2+y^2-6 x+2 y=28\) cuts off a chord of length \(\lambda\) units on the line \(2 x-5 y+18\) \(=0\), then the value of \(\lambda\) is

1 3
2 6
3 12
4 9
Conic Section

119699 The equation of circle with centre \((2,-3)\) and touching \(x\)-axis is

1 \(x^2+y^2-4 x-6 y+4=0\)
2 \(x^2+y^2-4 x-6 y-8=0\)
3 \(x^2+y^2-4 x+6 y+4=0\)
4 \(x^2+y^2+4 x-6 y+8=0\)
Conic Section

119701 For all real values of \(k\), the polar of the point \((2 k, k-4)\) with respect to \(x^2+y^2-4 x-6 y+1=\) 0 passes through the point

1 \((1,1)\)
2 \((1,-1)\)
3 \((-3,1)\)
4 \((3,1)\)
Conic Section

119702 The value of a, such that the power of the point \((1,6)\) with respect to the circle \(x^2+y^2+4 x-6 y\) \(-\mathbf{a}=\mathbf{0}\), is \(-\mathbf{1 6}\) is,

1 7
2 11
3 13
4 21
Conic Section

119703 The radius of the circle passing through the points \((-1,1),(2,-1)\) and \((1,0)\) is

1 5
2 \(\frac{\sqrt{130}}{2}\)
3 6
4 \(\frac{\sqrt{145}}{2}\)
Conic Section

119704 If the circle \(x^2+y^2-6 x+2 y=28\) cuts off a chord of length \(\lambda\) units on the line \(2 x-5 y+18\) \(=0\), then the value of \(\lambda\) is

1 3
2 6
3 12
4 9
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Conic Section

119699 The equation of circle with centre \((2,-3)\) and touching \(x\)-axis is

1 \(x^2+y^2-4 x-6 y+4=0\)
2 \(x^2+y^2-4 x-6 y-8=0\)
3 \(x^2+y^2-4 x+6 y+4=0\)
4 \(x^2+y^2+4 x-6 y+8=0\)
Conic Section

119701 For all real values of \(k\), the polar of the point \((2 k, k-4)\) with respect to \(x^2+y^2-4 x-6 y+1=\) 0 passes through the point

1 \((1,1)\)
2 \((1,-1)\)
3 \((-3,1)\)
4 \((3,1)\)
Conic Section

119702 The value of a, such that the power of the point \((1,6)\) with respect to the circle \(x^2+y^2+4 x-6 y\) \(-\mathbf{a}=\mathbf{0}\), is \(-\mathbf{1 6}\) is,

1 7
2 11
3 13
4 21
Conic Section

119703 The radius of the circle passing through the points \((-1,1),(2,-1)\) and \((1,0)\) is

1 5
2 \(\frac{\sqrt{130}}{2}\)
3 6
4 \(\frac{\sqrt{145}}{2}\)
Conic Section

119704 If the circle \(x^2+y^2-6 x+2 y=28\) cuts off a chord of length \(\lambda\) units on the line \(2 x-5 y+18\) \(=0\), then the value of \(\lambda\) is

1 3
2 6
3 12
4 9
Conic Section

119699 The equation of circle with centre \((2,-3)\) and touching \(x\)-axis is

1 \(x^2+y^2-4 x-6 y+4=0\)
2 \(x^2+y^2-4 x-6 y-8=0\)
3 \(x^2+y^2-4 x+6 y+4=0\)
4 \(x^2+y^2+4 x-6 y+8=0\)
Conic Section

119701 For all real values of \(k\), the polar of the point \((2 k, k-4)\) with respect to \(x^2+y^2-4 x-6 y+1=\) 0 passes through the point

1 \((1,1)\)
2 \((1,-1)\)
3 \((-3,1)\)
4 \((3,1)\)
Conic Section

119702 The value of a, such that the power of the point \((1,6)\) with respect to the circle \(x^2+y^2+4 x-6 y\) \(-\mathbf{a}=\mathbf{0}\), is \(-\mathbf{1 6}\) is,

1 7
2 11
3 13
4 21
Conic Section

119703 The radius of the circle passing through the points \((-1,1),(2,-1)\) and \((1,0)\) is

1 5
2 \(\frac{\sqrt{130}}{2}\)
3 6
4 \(\frac{\sqrt{145}}{2}\)
Conic Section

119704 If the circle \(x^2+y^2-6 x+2 y=28\) cuts off a chord of length \(\lambda\) units on the line \(2 x-5 y+18\) \(=0\), then the value of \(\lambda\) is

1 3
2 6
3 12
4 9
Conic Section

119699 The equation of circle with centre \((2,-3)\) and touching \(x\)-axis is

1 \(x^2+y^2-4 x-6 y+4=0\)
2 \(x^2+y^2-4 x-6 y-8=0\)
3 \(x^2+y^2-4 x+6 y+4=0\)
4 \(x^2+y^2+4 x-6 y+8=0\)
Conic Section

119701 For all real values of \(k\), the polar of the point \((2 k, k-4)\) with respect to \(x^2+y^2-4 x-6 y+1=\) 0 passes through the point

1 \((1,1)\)
2 \((1,-1)\)
3 \((-3,1)\)
4 \((3,1)\)
Conic Section

119702 The value of a, such that the power of the point \((1,6)\) with respect to the circle \(x^2+y^2+4 x-6 y\) \(-\mathbf{a}=\mathbf{0}\), is \(-\mathbf{1 6}\) is,

1 7
2 11
3 13
4 21
Conic Section

119703 The radius of the circle passing through the points \((-1,1),(2,-1)\) and \((1,0)\) is

1 5
2 \(\frac{\sqrt{130}}{2}\)
3 6
4 \(\frac{\sqrt{145}}{2}\)
Conic Section

119704 If the circle \(x^2+y^2-6 x+2 y=28\) cuts off a chord of length \(\lambda\) units on the line \(2 x-5 y+18\) \(=0\), then the value of \(\lambda\) is

1 3
2 6
3 12
4 9