119675
If the equation of the circle having its centre in the second quadrant touches the coordinate axes and also the line \(\frac{x}{5}+\frac{y}{12}=1\) is \(x^2+y^2+2 \lambda x-2 \lambda y+\lambda^2=0\), then \(\lambda=\)
1 3
2 10
3 15
4 -2
Explanation:
B Given, equation of Line \(\frac{x}{5}+\frac{y}{12}=1\) and equation of circle \(x^2+y^2+2 \lambda x-2 \lambda y+\lambda^2=0,\) Let \(r\) be the radius of the circle. circle touches coordinate axes and centre lies in second quadrant and centre \(c=(-r, r)\) circle touch \(\frac{x}{5}+\frac{y}{12}=1 \Rightarrow\left|\frac{12(-r)+5(r)-60}{\sqrt{25+144}}\right| \Rightarrow r=\left|\frac{-7 r-60}{13}\right|\) \(7 r+60= \pm 13 r\) \(r=10\) Therefore equation of circle is, \((x+10)^2+(y-10)^2=10^2\) \(x^2+y^2+20 x-20 y+100=0\)So, \(\lambda=10\)
AP EAMCET-22.04.2019
Conic Section
119676
The equation of a circle passing through the point \((2,8)\), touching the lines \(4 x-3 y-24=0\) and \(4 x+3 y-42=0\) and having the \(x\) coordinate of its centre less than or equal to 8 is
1 \(x^2+y^2+2 x-8 y-8=0\)
2 \(x^2+y^2-4 x-6 y-12=0\)
3 \(x^2+y^2-4 x-10 y+4=0\)
4 \(x^2+y^2-6 x-4 y-24=0\)
Explanation:
B Let, O (h, k) be the centre of the circle. Since the circle passes through the point \((2,8)\) \(\therefore \text { Radius of the circle }=\sqrt{(\mathrm{h}-2)^2+(\mathrm{k}-8)^2}\) The circle touches the lines \(4 x-3 y-24=0\) and \(4 x+\) \(3 \mathrm{y}-42=0\) \(\therefore\left|\frac{4 h-3 k-24}{\sqrt{4^2+5^2}}\right|=\left|\frac{4 h+3 k-42}{\sqrt{4^2+5^2}}\right|\) Solving then, we get \(4 \mathrm{~h}-3 \mathrm{k}-24= \pm(4 \mathrm{k}+3 \mathrm{~h}-42)\) \(\therefore 6 \mathrm{k}=18\) or \(\mathrm{k}=3\) by taking the positive sign and \(8 \mathrm{~h}=66\) or \(\mathrm{h}=\frac{66}{8}=\frac{33}{4}\) by taking positive sign Given, \(|\mathrm{h}| \leq 8 \Rightarrow-8 \leq \mathrm{h} \leq 8\) \(\therefore \mathrm{h} \in \frac{33}{4}\) Put, \(\mathrm{k}=3\) in equation (i) and (ii) and equation, we get \((4 h-33)^2=(h-2)^2+25\) \(16 h^2-264 h+1089=25 h^2+725-100 h\) \(\text { on solving }\) \(\mathrm{h}=\frac{-164 \pm \sqrt{164^2-36 \mathrm{x}(-364)}}{2 \times 9}\) \(\mathrm{~h}=2, \frac{-182}{9}\) But, \(-8 \leq \mathrm{h} \leq 8 \therefore \mathrm{h}=2\) Now, \(\mathrm{r}^2=(\mathrm{h}-2)^2+(\mathrm{k}-8)^2 \Rightarrow(2-2)^2+(3-8)^2\) \(\mathrm{r}^2=25\) \(\mathrm{r}=5\) Hence, the equation of circle is \((x-2)^2+(y-3)^2=25\) \(x^2+y^2-4 x-6 y+4+9-25=0\) \(x^2+y^2-4 x-6 y-12=0\)
AP EAMCET-22.04.2019
Conic Section
119678
The largest value of a for which the circle \(\mathbf{x}^2+\mathrm{y}^2=\mathbf{a}^2\) lies completely in the interior of the parabola \(y^2=4 x+16\) is
1 \(4 \sqrt{3}\)
2 \(2 \sqrt{3}\)
3 \(2 \sqrt{6}\)
4 \(4 \sqrt{6}\)
Explanation:
B Given, equation of circle \(x^2+y^2=a^2\) falls entirely inside the parabola \(\mathrm{y}^2=4(\mathrm{x}+4)\) Substituting \(y^2=4(x+4)\) in \(x^2+y^2=a^2\) Gives, \(x^2+4 x+16-a^2=0\) Roots of the above quadratic should be real and equal. \(D=0\) \(16=4\left(16-a^2\right)\) \(a^2=12\) \(a=2 \sqrt{3}\)
AP EAMCET-22.09.2020
Conic Section
119679
The equation of circle of radius \(\sqrt{17} \mathrm{unit}\), with centre on the positive side of \(\mathrm{X}\)-axis and through the point \((0,1)\) is
1 \(x^2+y^2-8 x-1=0\)
2 \(x^2+y^2+8 x-1=0\)
3 \(x^2+y^2-9 y-1=0\)
4 \(2 x^2+2 y^2-3 x+2 y=4\)
Explanation:
A Given that, Radius \(=\sqrt{17}\) Centre on positive side of \(x\)-axis i.e., \((a, 0)\) \(\therefore\) Equation of circle in \((x-a)^2+y^2=\sqrt{17}\) Since, it passes through \((0,1)\) \(\therefore \mathrm{a}^2+1^2=17\) \(a^2=16\) \(\mathrm{a}=4\) Therefore equation of circle is, \((\mathrm{x}-4)^2+\mathrm{y}^2=17\) \(\mathrm{x}^2+\mathrm{y}^2-8 \mathrm{x}-1=0\)
119675
If the equation of the circle having its centre in the second quadrant touches the coordinate axes and also the line \(\frac{x}{5}+\frac{y}{12}=1\) is \(x^2+y^2+2 \lambda x-2 \lambda y+\lambda^2=0\), then \(\lambda=\)
1 3
2 10
3 15
4 -2
Explanation:
B Given, equation of Line \(\frac{x}{5}+\frac{y}{12}=1\) and equation of circle \(x^2+y^2+2 \lambda x-2 \lambda y+\lambda^2=0,\) Let \(r\) be the radius of the circle. circle touches coordinate axes and centre lies in second quadrant and centre \(c=(-r, r)\) circle touch \(\frac{x}{5}+\frac{y}{12}=1 \Rightarrow\left|\frac{12(-r)+5(r)-60}{\sqrt{25+144}}\right| \Rightarrow r=\left|\frac{-7 r-60}{13}\right|\) \(7 r+60= \pm 13 r\) \(r=10\) Therefore equation of circle is, \((x+10)^2+(y-10)^2=10^2\) \(x^2+y^2+20 x-20 y+100=0\)So, \(\lambda=10\)
AP EAMCET-22.04.2019
Conic Section
119676
The equation of a circle passing through the point \((2,8)\), touching the lines \(4 x-3 y-24=0\) and \(4 x+3 y-42=0\) and having the \(x\) coordinate of its centre less than or equal to 8 is
1 \(x^2+y^2+2 x-8 y-8=0\)
2 \(x^2+y^2-4 x-6 y-12=0\)
3 \(x^2+y^2-4 x-10 y+4=0\)
4 \(x^2+y^2-6 x-4 y-24=0\)
Explanation:
B Let, O (h, k) be the centre of the circle. Since the circle passes through the point \((2,8)\) \(\therefore \text { Radius of the circle }=\sqrt{(\mathrm{h}-2)^2+(\mathrm{k}-8)^2}\) The circle touches the lines \(4 x-3 y-24=0\) and \(4 x+\) \(3 \mathrm{y}-42=0\) \(\therefore\left|\frac{4 h-3 k-24}{\sqrt{4^2+5^2}}\right|=\left|\frac{4 h+3 k-42}{\sqrt{4^2+5^2}}\right|\) Solving then, we get \(4 \mathrm{~h}-3 \mathrm{k}-24= \pm(4 \mathrm{k}+3 \mathrm{~h}-42)\) \(\therefore 6 \mathrm{k}=18\) or \(\mathrm{k}=3\) by taking the positive sign and \(8 \mathrm{~h}=66\) or \(\mathrm{h}=\frac{66}{8}=\frac{33}{4}\) by taking positive sign Given, \(|\mathrm{h}| \leq 8 \Rightarrow-8 \leq \mathrm{h} \leq 8\) \(\therefore \mathrm{h} \in \frac{33}{4}\) Put, \(\mathrm{k}=3\) in equation (i) and (ii) and equation, we get \((4 h-33)^2=(h-2)^2+25\) \(16 h^2-264 h+1089=25 h^2+725-100 h\) \(\text { on solving }\) \(\mathrm{h}=\frac{-164 \pm \sqrt{164^2-36 \mathrm{x}(-364)}}{2 \times 9}\) \(\mathrm{~h}=2, \frac{-182}{9}\) But, \(-8 \leq \mathrm{h} \leq 8 \therefore \mathrm{h}=2\) Now, \(\mathrm{r}^2=(\mathrm{h}-2)^2+(\mathrm{k}-8)^2 \Rightarrow(2-2)^2+(3-8)^2\) \(\mathrm{r}^2=25\) \(\mathrm{r}=5\) Hence, the equation of circle is \((x-2)^2+(y-3)^2=25\) \(x^2+y^2-4 x-6 y+4+9-25=0\) \(x^2+y^2-4 x-6 y-12=0\)
AP EAMCET-22.04.2019
Conic Section
119678
The largest value of a for which the circle \(\mathbf{x}^2+\mathrm{y}^2=\mathbf{a}^2\) lies completely in the interior of the parabola \(y^2=4 x+16\) is
1 \(4 \sqrt{3}\)
2 \(2 \sqrt{3}\)
3 \(2 \sqrt{6}\)
4 \(4 \sqrt{6}\)
Explanation:
B Given, equation of circle \(x^2+y^2=a^2\) falls entirely inside the parabola \(\mathrm{y}^2=4(\mathrm{x}+4)\) Substituting \(y^2=4(x+4)\) in \(x^2+y^2=a^2\) Gives, \(x^2+4 x+16-a^2=0\) Roots of the above quadratic should be real and equal. \(D=0\) \(16=4\left(16-a^2\right)\) \(a^2=12\) \(a=2 \sqrt{3}\)
AP EAMCET-22.09.2020
Conic Section
119679
The equation of circle of radius \(\sqrt{17} \mathrm{unit}\), with centre on the positive side of \(\mathrm{X}\)-axis and through the point \((0,1)\) is
1 \(x^2+y^2-8 x-1=0\)
2 \(x^2+y^2+8 x-1=0\)
3 \(x^2+y^2-9 y-1=0\)
4 \(2 x^2+2 y^2-3 x+2 y=4\)
Explanation:
A Given that, Radius \(=\sqrt{17}\) Centre on positive side of \(x\)-axis i.e., \((a, 0)\) \(\therefore\) Equation of circle in \((x-a)^2+y^2=\sqrt{17}\) Since, it passes through \((0,1)\) \(\therefore \mathrm{a}^2+1^2=17\) \(a^2=16\) \(\mathrm{a}=4\) Therefore equation of circle is, \((\mathrm{x}-4)^2+\mathrm{y}^2=17\) \(\mathrm{x}^2+\mathrm{y}^2-8 \mathrm{x}-1=0\)
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Conic Section
119675
If the equation of the circle having its centre in the second quadrant touches the coordinate axes and also the line \(\frac{x}{5}+\frac{y}{12}=1\) is \(x^2+y^2+2 \lambda x-2 \lambda y+\lambda^2=0\), then \(\lambda=\)
1 3
2 10
3 15
4 -2
Explanation:
B Given, equation of Line \(\frac{x}{5}+\frac{y}{12}=1\) and equation of circle \(x^2+y^2+2 \lambda x-2 \lambda y+\lambda^2=0,\) Let \(r\) be the radius of the circle. circle touches coordinate axes and centre lies in second quadrant and centre \(c=(-r, r)\) circle touch \(\frac{x}{5}+\frac{y}{12}=1 \Rightarrow\left|\frac{12(-r)+5(r)-60}{\sqrt{25+144}}\right| \Rightarrow r=\left|\frac{-7 r-60}{13}\right|\) \(7 r+60= \pm 13 r\) \(r=10\) Therefore equation of circle is, \((x+10)^2+(y-10)^2=10^2\) \(x^2+y^2+20 x-20 y+100=0\)So, \(\lambda=10\)
AP EAMCET-22.04.2019
Conic Section
119676
The equation of a circle passing through the point \((2,8)\), touching the lines \(4 x-3 y-24=0\) and \(4 x+3 y-42=0\) and having the \(x\) coordinate of its centre less than or equal to 8 is
1 \(x^2+y^2+2 x-8 y-8=0\)
2 \(x^2+y^2-4 x-6 y-12=0\)
3 \(x^2+y^2-4 x-10 y+4=0\)
4 \(x^2+y^2-6 x-4 y-24=0\)
Explanation:
B Let, O (h, k) be the centre of the circle. Since the circle passes through the point \((2,8)\) \(\therefore \text { Radius of the circle }=\sqrt{(\mathrm{h}-2)^2+(\mathrm{k}-8)^2}\) The circle touches the lines \(4 x-3 y-24=0\) and \(4 x+\) \(3 \mathrm{y}-42=0\) \(\therefore\left|\frac{4 h-3 k-24}{\sqrt{4^2+5^2}}\right|=\left|\frac{4 h+3 k-42}{\sqrt{4^2+5^2}}\right|\) Solving then, we get \(4 \mathrm{~h}-3 \mathrm{k}-24= \pm(4 \mathrm{k}+3 \mathrm{~h}-42)\) \(\therefore 6 \mathrm{k}=18\) or \(\mathrm{k}=3\) by taking the positive sign and \(8 \mathrm{~h}=66\) or \(\mathrm{h}=\frac{66}{8}=\frac{33}{4}\) by taking positive sign Given, \(|\mathrm{h}| \leq 8 \Rightarrow-8 \leq \mathrm{h} \leq 8\) \(\therefore \mathrm{h} \in \frac{33}{4}\) Put, \(\mathrm{k}=3\) in equation (i) and (ii) and equation, we get \((4 h-33)^2=(h-2)^2+25\) \(16 h^2-264 h+1089=25 h^2+725-100 h\) \(\text { on solving }\) \(\mathrm{h}=\frac{-164 \pm \sqrt{164^2-36 \mathrm{x}(-364)}}{2 \times 9}\) \(\mathrm{~h}=2, \frac{-182}{9}\) But, \(-8 \leq \mathrm{h} \leq 8 \therefore \mathrm{h}=2\) Now, \(\mathrm{r}^2=(\mathrm{h}-2)^2+(\mathrm{k}-8)^2 \Rightarrow(2-2)^2+(3-8)^2\) \(\mathrm{r}^2=25\) \(\mathrm{r}=5\) Hence, the equation of circle is \((x-2)^2+(y-3)^2=25\) \(x^2+y^2-4 x-6 y+4+9-25=0\) \(x^2+y^2-4 x-6 y-12=0\)
AP EAMCET-22.04.2019
Conic Section
119678
The largest value of a for which the circle \(\mathbf{x}^2+\mathrm{y}^2=\mathbf{a}^2\) lies completely in the interior of the parabola \(y^2=4 x+16\) is
1 \(4 \sqrt{3}\)
2 \(2 \sqrt{3}\)
3 \(2 \sqrt{6}\)
4 \(4 \sqrt{6}\)
Explanation:
B Given, equation of circle \(x^2+y^2=a^2\) falls entirely inside the parabola \(\mathrm{y}^2=4(\mathrm{x}+4)\) Substituting \(y^2=4(x+4)\) in \(x^2+y^2=a^2\) Gives, \(x^2+4 x+16-a^2=0\) Roots of the above quadratic should be real and equal. \(D=0\) \(16=4\left(16-a^2\right)\) \(a^2=12\) \(a=2 \sqrt{3}\)
AP EAMCET-22.09.2020
Conic Section
119679
The equation of circle of radius \(\sqrt{17} \mathrm{unit}\), with centre on the positive side of \(\mathrm{X}\)-axis and through the point \((0,1)\) is
1 \(x^2+y^2-8 x-1=0\)
2 \(x^2+y^2+8 x-1=0\)
3 \(x^2+y^2-9 y-1=0\)
4 \(2 x^2+2 y^2-3 x+2 y=4\)
Explanation:
A Given that, Radius \(=\sqrt{17}\) Centre on positive side of \(x\)-axis i.e., \((a, 0)\) \(\therefore\) Equation of circle in \((x-a)^2+y^2=\sqrt{17}\) Since, it passes through \((0,1)\) \(\therefore \mathrm{a}^2+1^2=17\) \(a^2=16\) \(\mathrm{a}=4\) Therefore equation of circle is, \((\mathrm{x}-4)^2+\mathrm{y}^2=17\) \(\mathrm{x}^2+\mathrm{y}^2-8 \mathrm{x}-1=0\)
119675
If the equation of the circle having its centre in the second quadrant touches the coordinate axes and also the line \(\frac{x}{5}+\frac{y}{12}=1\) is \(x^2+y^2+2 \lambda x-2 \lambda y+\lambda^2=0\), then \(\lambda=\)
1 3
2 10
3 15
4 -2
Explanation:
B Given, equation of Line \(\frac{x}{5}+\frac{y}{12}=1\) and equation of circle \(x^2+y^2+2 \lambda x-2 \lambda y+\lambda^2=0,\) Let \(r\) be the radius of the circle. circle touches coordinate axes and centre lies in second quadrant and centre \(c=(-r, r)\) circle touch \(\frac{x}{5}+\frac{y}{12}=1 \Rightarrow\left|\frac{12(-r)+5(r)-60}{\sqrt{25+144}}\right| \Rightarrow r=\left|\frac{-7 r-60}{13}\right|\) \(7 r+60= \pm 13 r\) \(r=10\) Therefore equation of circle is, \((x+10)^2+(y-10)^2=10^2\) \(x^2+y^2+20 x-20 y+100=0\)So, \(\lambda=10\)
AP EAMCET-22.04.2019
Conic Section
119676
The equation of a circle passing through the point \((2,8)\), touching the lines \(4 x-3 y-24=0\) and \(4 x+3 y-42=0\) and having the \(x\) coordinate of its centre less than or equal to 8 is
1 \(x^2+y^2+2 x-8 y-8=0\)
2 \(x^2+y^2-4 x-6 y-12=0\)
3 \(x^2+y^2-4 x-10 y+4=0\)
4 \(x^2+y^2-6 x-4 y-24=0\)
Explanation:
B Let, O (h, k) be the centre of the circle. Since the circle passes through the point \((2,8)\) \(\therefore \text { Radius of the circle }=\sqrt{(\mathrm{h}-2)^2+(\mathrm{k}-8)^2}\) The circle touches the lines \(4 x-3 y-24=0\) and \(4 x+\) \(3 \mathrm{y}-42=0\) \(\therefore\left|\frac{4 h-3 k-24}{\sqrt{4^2+5^2}}\right|=\left|\frac{4 h+3 k-42}{\sqrt{4^2+5^2}}\right|\) Solving then, we get \(4 \mathrm{~h}-3 \mathrm{k}-24= \pm(4 \mathrm{k}+3 \mathrm{~h}-42)\) \(\therefore 6 \mathrm{k}=18\) or \(\mathrm{k}=3\) by taking the positive sign and \(8 \mathrm{~h}=66\) or \(\mathrm{h}=\frac{66}{8}=\frac{33}{4}\) by taking positive sign Given, \(|\mathrm{h}| \leq 8 \Rightarrow-8 \leq \mathrm{h} \leq 8\) \(\therefore \mathrm{h} \in \frac{33}{4}\) Put, \(\mathrm{k}=3\) in equation (i) and (ii) and equation, we get \((4 h-33)^2=(h-2)^2+25\) \(16 h^2-264 h+1089=25 h^2+725-100 h\) \(\text { on solving }\) \(\mathrm{h}=\frac{-164 \pm \sqrt{164^2-36 \mathrm{x}(-364)}}{2 \times 9}\) \(\mathrm{~h}=2, \frac{-182}{9}\) But, \(-8 \leq \mathrm{h} \leq 8 \therefore \mathrm{h}=2\) Now, \(\mathrm{r}^2=(\mathrm{h}-2)^2+(\mathrm{k}-8)^2 \Rightarrow(2-2)^2+(3-8)^2\) \(\mathrm{r}^2=25\) \(\mathrm{r}=5\) Hence, the equation of circle is \((x-2)^2+(y-3)^2=25\) \(x^2+y^2-4 x-6 y+4+9-25=0\) \(x^2+y^2-4 x-6 y-12=0\)
AP EAMCET-22.04.2019
Conic Section
119678
The largest value of a for which the circle \(\mathbf{x}^2+\mathrm{y}^2=\mathbf{a}^2\) lies completely in the interior of the parabola \(y^2=4 x+16\) is
1 \(4 \sqrt{3}\)
2 \(2 \sqrt{3}\)
3 \(2 \sqrt{6}\)
4 \(4 \sqrt{6}\)
Explanation:
B Given, equation of circle \(x^2+y^2=a^2\) falls entirely inside the parabola \(\mathrm{y}^2=4(\mathrm{x}+4)\) Substituting \(y^2=4(x+4)\) in \(x^2+y^2=a^2\) Gives, \(x^2+4 x+16-a^2=0\) Roots of the above quadratic should be real and equal. \(D=0\) \(16=4\left(16-a^2\right)\) \(a^2=12\) \(a=2 \sqrt{3}\)
AP EAMCET-22.09.2020
Conic Section
119679
The equation of circle of radius \(\sqrt{17} \mathrm{unit}\), with centre on the positive side of \(\mathrm{X}\)-axis and through the point \((0,1)\) is
1 \(x^2+y^2-8 x-1=0\)
2 \(x^2+y^2+8 x-1=0\)
3 \(x^2+y^2-9 y-1=0\)
4 \(2 x^2+2 y^2-3 x+2 y=4\)
Explanation:
A Given that, Radius \(=\sqrt{17}\) Centre on positive side of \(x\)-axis i.e., \((a, 0)\) \(\therefore\) Equation of circle in \((x-a)^2+y^2=\sqrt{17}\) Since, it passes through \((0,1)\) \(\therefore \mathrm{a}^2+1^2=17\) \(a^2=16\) \(\mathrm{a}=4\) Therefore equation of circle is, \((\mathrm{x}-4)^2+\mathrm{y}^2=17\) \(\mathrm{x}^2+\mathrm{y}^2-8 \mathrm{x}-1=0\)