Standard and General Form of Equation of a Circle
Conic Section

119659 The line \(x-2=0\) cuts the circle \(x^2+y^2-8 x-2 y+8=0\) at \(A\) and \(B\). The equation of the circle passing through the points \(A\) and \(B\) and having least radius is

1 \(x^2+y^2-4 x+2 y-1=0\)
2 \(x^2+y^2-4 x-2 y=0\)
3 \(x^2+y^2-4 x-2 y+1=0\)
4 \(x^2+y^2-4 x+4 y=0\)
Conic Section

119660 The radius of a circle whose center lies in the fourth quadrant and touches each of the three lines \(x=0, y=0\) and \(3 x+4 y-12=0\) is \(\qquad\) \((\mathrm{x}-2=0)\) \(\frac{-\lambda+8}{2}=2\) \(-\lambda+8=4\) \(-\lambda=-4\) \(\lambda=4\) units.

1 1
2 2
3 3
4 4
Conic Section

119661 If the circle \(x^2+y^2-4 x-8 y-5=0\) intersects the line \(3 x-4 y-m=0\) in two distinct points then the number of integral values of ' \(\mathrm{m}\) ' is \(\qquad\)

1 52
2 51
3 50
4 49
Conic Section

119662 The equation of a circle with center at \((-2,3)\) and circumference of \(4 \pi\) units is

1 \(x^2+y^2+4 x-6 y-9=0\)
2 \(x^2+y^2+4 x-6 y+9=0\)
3 \(x^2+y^2+4 x-6 y-3=0\)
4 \(x^2+y^2-4 x+6 y-9=0\)
Conic Section

119659 The line \(x-2=0\) cuts the circle \(x^2+y^2-8 x-2 y+8=0\) at \(A\) and \(B\). The equation of the circle passing through the points \(A\) and \(B\) and having least radius is

1 \(x^2+y^2-4 x+2 y-1=0\)
2 \(x^2+y^2-4 x-2 y=0\)
3 \(x^2+y^2-4 x-2 y+1=0\)
4 \(x^2+y^2-4 x+4 y=0\)
Conic Section

119660 The radius of a circle whose center lies in the fourth quadrant and touches each of the three lines \(x=0, y=0\) and \(3 x+4 y-12=0\) is \(\qquad\) \((\mathrm{x}-2=0)\) \(\frac{-\lambda+8}{2}=2\) \(-\lambda+8=4\) \(-\lambda=-4\) \(\lambda=4\) units.

1 1
2 2
3 3
4 4
Conic Section

119661 If the circle \(x^2+y^2-4 x-8 y-5=0\) intersects the line \(3 x-4 y-m=0\) in two distinct points then the number of integral values of ' \(\mathrm{m}\) ' is \(\qquad\)

1 52
2 51
3 50
4 49
Conic Section

119662 The equation of a circle with center at \((-2,3)\) and circumference of \(4 \pi\) units is

1 \(x^2+y^2+4 x-6 y-9=0\)
2 \(x^2+y^2+4 x-6 y+9=0\)
3 \(x^2+y^2+4 x-6 y-3=0\)
4 \(x^2+y^2-4 x+6 y-9=0\)
Conic Section

119659 The line \(x-2=0\) cuts the circle \(x^2+y^2-8 x-2 y+8=0\) at \(A\) and \(B\). The equation of the circle passing through the points \(A\) and \(B\) and having least radius is

1 \(x^2+y^2-4 x+2 y-1=0\)
2 \(x^2+y^2-4 x-2 y=0\)
3 \(x^2+y^2-4 x-2 y+1=0\)
4 \(x^2+y^2-4 x+4 y=0\)
Conic Section

119660 The radius of a circle whose center lies in the fourth quadrant and touches each of the three lines \(x=0, y=0\) and \(3 x+4 y-12=0\) is \(\qquad\) \((\mathrm{x}-2=0)\) \(\frac{-\lambda+8}{2}=2\) \(-\lambda+8=4\) \(-\lambda=-4\) \(\lambda=4\) units.

1 1
2 2
3 3
4 4
Conic Section

119661 If the circle \(x^2+y^2-4 x-8 y-5=0\) intersects the line \(3 x-4 y-m=0\) in two distinct points then the number of integral values of ' \(\mathrm{m}\) ' is \(\qquad\)

1 52
2 51
3 50
4 49
Conic Section

119662 The equation of a circle with center at \((-2,3)\) and circumference of \(4 \pi\) units is

1 \(x^2+y^2+4 x-6 y-9=0\)
2 \(x^2+y^2+4 x-6 y+9=0\)
3 \(x^2+y^2+4 x-6 y-3=0\)
4 \(x^2+y^2-4 x+6 y-9=0\)
Conic Section

119659 The line \(x-2=0\) cuts the circle \(x^2+y^2-8 x-2 y+8=0\) at \(A\) and \(B\). The equation of the circle passing through the points \(A\) and \(B\) and having least radius is

1 \(x^2+y^2-4 x+2 y-1=0\)
2 \(x^2+y^2-4 x-2 y=0\)
3 \(x^2+y^2-4 x-2 y+1=0\)
4 \(x^2+y^2-4 x+4 y=0\)
Conic Section

119660 The radius of a circle whose center lies in the fourth quadrant and touches each of the three lines \(x=0, y=0\) and \(3 x+4 y-12=0\) is \(\qquad\) \((\mathrm{x}-2=0)\) \(\frac{-\lambda+8}{2}=2\) \(-\lambda+8=4\) \(-\lambda=-4\) \(\lambda=4\) units.

1 1
2 2
3 3
4 4
Conic Section

119661 If the circle \(x^2+y^2-4 x-8 y-5=0\) intersects the line \(3 x-4 y-m=0\) in two distinct points then the number of integral values of ' \(\mathrm{m}\) ' is \(\qquad\)

1 52
2 51
3 50
4 49
Conic Section

119662 The equation of a circle with center at \((-2,3)\) and circumference of \(4 \pi\) units is

1 \(x^2+y^2+4 x-6 y-9=0\)
2 \(x^2+y^2+4 x-6 y+9=0\)
3 \(x^2+y^2+4 x-6 y-3=0\)
4 \(x^2+y^2-4 x+6 y-9=0\)