Straight Line
88794
One possible condition for the three points (a, b), (b, a) and \(\left(a^{2},-b^{2}\right)\) to be collinear, is
1 \(a-b=2\)
2 \(a+b=2\)
3 \(\mathrm{a}=1+\mathrm{b}\)
4 \(\mathrm{a}=1-\mathrm{b}\)
Explanation:
(C) : Given points will be collinear, if
\(\left|\begin{array}{ccc}\mathrm{a} & \mathrm{b} & 1 \\ \mathrm{~b} & \mathrm{a} & 1 \\ \mathrm{a}^2 & -\mathrm{b}^2 & 1\end{array}\right|=0\)
\(\begin{aligned} & \Rightarrow\left|\begin{array}{ccc}\mathrm{a} & \mathrm{b} & 1 \\ \mathrm{~b}-\mathrm{a} & \mathrm{a}-\mathrm{b} & 0 \\ \mathrm{a}^2-\mathrm{a} & -\mathrm{b}^2-\mathrm{b} & 0\end{array}\right|=0 \\ & \Rightarrow(\mathrm{a}-\mathrm{b})\left|\begin{array}{ccc}\mathrm{a} & \mathrm{b} & 1 \\ -1 & 1 & 0 \\ \mathrm{a}^2-\mathrm{a} & -\mathrm{b}^2-\mathrm{b} & 0\end{array}\right|=0\end{aligned}\)
[applying \(\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}, \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}\) ]
\(\begin{aligned} & \Rightarrow(\mathrm{a}-\mathrm{b})\left(\mathrm{b}^2+\mathrm{b}-\mathrm{a}^2+\mathrm{a}\right)=0 \\ & \Rightarrow(\mathrm{a}-\mathrm{b})\left\{(\mathrm{a}+\mathrm{b})-\left(\mathrm{a}^2-\mathrm{b}^2\right)\right\}=0 \\ & \Rightarrow(\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b})(1-\mathrm{a}+\mathrm{b})=0 \\ & \Rightarrow \mathrm{a}=\mathrm{b} \text { or } \mathrm{a}+\mathrm{b}=0 \text { or } \mathrm{a}=1+\mathrm{b}\end{aligned}\)